【正点原子探索者STM32F407开发板例程连载+教学】第37章 MPU6050六轴传感器实验

2019-07-20 08:17发布

第三十七章 MPU6050六轴传感器实验

   1.硬件平台:正点原子探索者STM32F407开发板  2.软件平台:MDK5.1  3.固件库版本:V1.4.0 
本章,我们介绍当下最流行的一款六轴(三轴加速度+三轴角速度(陀螺仪))传感器:MPU6050,该传感器广泛用于四轴、平衡车和空中鼠标等设计,具有非常广泛的应用范围。ALIENTEK探索者STM32F4开发板自带了MPU6050传感器。本章我们将使用STM32F4来驱动MPU6050,读取其原始数据,并利用其自带的DMP实现姿态解算,结合匿名四轴上位机软件和LCD显示,教大家如何使用这款功能强大的六轴传感器。本章分为如下几个部分: 37.1 MPU6050简介 37.2 硬件设计 37.3 软件设计 37.4 下载验证  

37.1 MPU6050简介

本节,我们将分2个部分介绍:1MPU6050基础介绍。2DMP使用简介。

37.1.1 MPU6050基础介绍

MPU6050InvenSense公司推出的全球首款整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了安装空间。 MPU6050内部整合了3轴陀螺仪和3轴加速度传感器,并且含有一个第二IIC接口,可用于连接外部磁力传感器,并利用自带的数字运动处理器(DMP: Digital Motion Processor)硬件加速引擎,通过主IIC接口,向应用端输出完整的9轴融合演算数据。有了DMP,我们可以使用InvenSense公司提供的运动处理资料库,非常方便的实现姿态解算,降低了运动处理运算对操作系统的负荷,同时大大降低了开发难度。 MPU6050的特点包括: ①       以数字形式输出6轴或9轴(需外接磁传感器)的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据(需DMP支持) ②       具有131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000与±2000°/sec 3轴角速度感测器(陀螺仪) ③       集成可程序控制,范围为±2g、±4g、±8g和±16g3轴加速度传感器 ④       移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移 ⑤       自带数字运动处理(DMP: Digital Motion Processing)引擎可减少MCU复杂的融合演算数据、感测器同步化、姿势感应等的负荷 ⑥       内建运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求 ⑦       自带一个数字温度传感器 ⑧       带数字输入同步引脚(Sync pin)支持视频电子影相稳定技术与GPS ⑨       可程序控制的中断(interrupt),支持姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G中断、零动作感应、触击感应、摇动感应功能 ⑩       VDD供电电压为2.5V±5%3.0V±5%3.3V±5%VLOGIC可低至1.8V± 5% ?       陀螺仪工作电流:5mA,陀螺仪待机电流:5uA;加速器工作电流:500uA,加速器省电模式电流:40uA@10Hz ?       自带1024字节FIFO,有助于降低系统功耗 ?       高达400KhzIIC通信接口 ?       超小封装尺寸:4x4x0.9mmQFN MPU6050传感器的检测轴如图37.1.1.1所示:
 37.1.1.1 MPU6050检测轴及其方向 MPU6050的内部框图如图37.1.1.2所示:  37.1.1.2 MPU6050框图        其中,SCLSDA是连接MCUIIC接口,MCU通过这个IIC接口来控制MPU6050,另外还有一个IIC接口:AUX_CLAUX_DA,这个接口可用来连接外部从设备,比如磁传感器,这样就可以组成一个九轴传感器。VLOGICIO口电压,该引脚最低可以到1.8V,我们一般直接接VDD即可。AD0是从IIC接口(接MCU)的地址控制引脚,该引脚控制IIC地址的最低位。如果接GND,则MPU6050IIC地址是:0X68,如果接VDD,则是0X69,注意:这里的地址是不包含数据传输的最低位的(最低位用来表示读写)!!        在探索者STM32F4开发板上,AD0是接GND的,所以MPU6050IIC地址是0X68(不含最低位),IIC通信的时序我们在之前已经介绍过(第二十九章,IIC实验),这里就不再细说了。        接下来,我们介绍一下利用STM32F4读取MPU6050的加速度和角度传感器数据(非中断方式),需要哪些初始化步骤: 1)初始化IIC接口 MPU6050采用IICSTM32F4通信,所以我们需要先初始化与MPU6050连接的SDASCL数据线。这个在前面的IIC实验章节已经介绍过了,这里MPU605024C02共用一个IIC,所以初始化IIC完全一模一样。 2)复位MPU6050        这一步让MPU6050内部所有寄存器恢复默认值,通过对电源管理寄存器10X6B)的bit71实现。 复位后,电源管理寄存器1恢复默认值(0X40),然后必须设置该寄存器为0X00,以唤醒MPU6050,进入正常工作状态。 3)设置角速度传感器(陀螺仪)和加速度传感器的满量程范围        这一步,我们设置两个传感器的满量程范围(FSR),分别通过陀螺仪配置寄存器(0X1B)和加速度传感器配置寄存器(0X1C)设置。我们一般设置陀螺仪的满量程范围为±2000dps,加速度传感器的满量程范围为±2g 4)设置其他参数        这里,我们还需要配置的参数有:关闭中断、关闭AUX IIC接口、禁止FIFO、设置陀螺仪采样率和设置数字低通滤波器(DLPF)等。本章我们不用中断方式读取数据,所以关闭中断,然后也没用到AUX IIC接口外接其他传感器,所以也关闭这个接口。分别通过中断使能寄存器(0X38)和用户控制寄存器(0X6A)控制。MPU6050可以使用FIFO存储传感器数据,不过本章我们没有用到,所以关闭所有FIFO通道,这个通过FIFO使能寄存器(0X23)控制,默认都是0(即禁止FIFO),所以用默认值就可以了。陀螺仪采样率通过采样率分频寄存器(0X19)控制,这个采样率我们一般设置为50即可。数字低通滤波器(DLPF)则通过配置寄存器(0X1A)设置,一般设置DLPF为带宽的1/2即可。 5)配置系统时钟源并使能角速度传感器和加速度传感器        系统时钟源同样是通过电源管理寄存器10X1B)来设置,该寄存器的最低三位用于设置系统时钟源选择,默认值是0(内部8M RC震荡),不过我们一般设置为1,选择x轴陀螺PLL作为时钟源,以获得更高精度的时钟。同时,使能角速度传感器和加速度传感器,这两个操作通过电源管理寄存器20X6C)来设置,设置对应位为0即可开启。        至此,MPU6050的初始化就完成了,可以正常工作了(其他未设置的寄存器全部采用默认值即可),接下来,我们就可以读取相关寄存器,得到加速度传感器、角速度传感器和温度传感器的数据了。不过,我们先简单介绍几个重要的寄存器。              首先,我们介绍电源管理寄存器1,该寄存器地址为0X6B,各位描述如图37.1.1.3所示:  37.1.1.3 电源管理寄存器1各位描述        其中,DEVICE_RESET位用来控制复位,设置为1,复位MPU6050,复位结束后,MPU硬件自动清零该位。SLEEEP位用于控制MPU6050的工作模式,复位后,该位为1,即进入了睡眠模式(低功耗),所以我们要清零该位,以进入正常工作模式。TEMP_DIS用于设置是否使能温度传感器,设置为0,则使能。最后CLKSEL[2:0]用于选择系统时钟源,选择关系如表37.1.1.1所示: CLKSEL[2:0] 时钟源 000 内部8M RC晶振 001 PLL,使用X轴陀螺作为参考 010 PLL,使用Y轴陀螺作为参考 011 PLL,使用Z轴陀螺作为参考 100 PLL,使用外部32.768Khz作为参考 101 PLL,使用外部19.2Mhz作为参考 110 保留 111 关闭时钟,保持时序产生电路复位状态37.1.1.1 CLKSEL选择列表        默认是使用内部8M RC晶振的,精度不高,所以我们一般选择X/Y/Z轴陀螺作为参考的PLL作为时钟源,一般设置CLKSEL=001即可。        接着,我们看陀螺仪配置寄存器,该寄存器地址为:0X1B,各位描述如图37.1.4所示:  37.1.1.4 陀螺仪配置寄存器各位描述        该寄存器我们只关心FS_SEL[1:0]这两个位,用于设置陀螺仪的满量程范围:0,±250°/S1,±500°/S2,±1000°/S3,±2000°/S;我们一般设置为3,即±2000°/S,因为陀螺仪的ADC16位分辨率,所以得到灵敏度为:65536/4000=16.4LSB/(°/S)        接下来,我们看加速度传感器配置寄存器,寄存器地址为:0X1C,各位描述如图37.1.1.5所示:  37.1.1.5 加速度传感器配置寄存器各位描述        该寄存器我们只关心AFS_SEL[1:0]这两个位,用于设置加速度传感器的满量程范围:0,±2g1,±4g2,±8g3,±16g;我们一般设置为0,即±2g,因为加速度传感器的ADC也是16位,所以得到灵敏度为:65536/4=16384LSB/g        接下来,我看看FIFO使能寄存器,寄存器地址为:0X1C,各位描述如图37.1.1.6所示:  37.1.1.6 FIFO使能寄存器各位描述        该寄存器用于控制FIFO使能,在简单读取传感器数据的时候,可以不用FIFO,设置对应位为0即可禁止FIFO,设置为1,则使能FIFO。注意加速度传感器的3个轴,全由1个位(ACCEL_FIFO_EN)控制,只要该位置1,则加速度传感器的三个通道都开启FIFO了。        接下来,我们看陀螺仪采样率分频寄存器,寄存器地址为:0X19,各位描述如图37.1.1.7所示:  37.1.1.7 陀螺仪采样率分频寄存器各位描述        该寄存器用于设置MPU6050的陀螺仪采样频率,计算公式为: 采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)        这里陀螺仪的输出频率,是1Khz或者8Khz,与数字低通滤波器(DLPF)的设置有关,当DLPF_CFG=0/7的时候,频率为8Khz,其他情况是1Khz。而且DLPF滤波频率一般设置为采样率的一半。采样率,我们假定设置为50Hz,那么SMPLRT_DIV=1000/50-1=19        接下来,我们看配置寄存器,寄存器地址为:0X1A,各位描述如图37.1.1.8所示:  37.1.1.8 配置寄存器各位描述        这里,我们主要关心数字低通滤波器(DLPF)的设置位,即:DLPF_CFG[2:0],加速度计和陀螺仪,都是根据这三个位的配置进行过滤的。DLPF_CFG不同配置对应的过滤情况如表37.1. 1. 2所示:   DLPF_CFG[2:0] 加速度传感器
Fs=1Khz
角速度传感器
(陀螺仪)
带宽(Hz) 延迟(ms 带宽(Hz) 延迟(ms Fs(Khz) 000 260 0 256 0.98 8 001 184 2.0 188 1.9 1 010 94 3.0 98 2.8 1 011 44 4.9 42 4.8 1 100 21 8.5 20 8.3 1 101 10 13.8 10 13.4 1 110 5 19.0 5 18.6 1 111 保留 保留 837.1.1.2 DLPF_CFG配置表        这里的加速度传感器,输出速率(Fs)固定是1Khz,而角速度传感器的输出速率(Fs),则根据DLPF_CFG的配置有所不同。一般我们设置角速度传感器的带宽为其采样率的一半,如前面所说的,如果设置采样率为50Hz,那么带宽就应该设置为25Hz,取近似值20Hz,就应该设置DLPF_CFG=100        接下来,我们看电源管理寄存器2,寄存器地址为:0X6C,各位描述如图37.1.1.9所示:  37.1.1.9 电源管理寄存器2各位描述        该寄存器的LP_WAKE_CTRL用于控制低功耗时的唤醒频率,本章用不到。剩下的6位,分别控制加速度和陀螺仪的x/y/z轴是否进入待机模式,这里我们全部都不进入待机模式,所以全部设置为0即可。         接下来,我们看看陀螺仪数据输出寄存器,总共有6个寄存器组成,地址为:0X43~0X48,通过读取这6个寄存器,就可以读到陀螺仪x/y/z轴的值,比如x轴的数据,可以通过读取0X43(高8位)和0X44(低8位)寄存器得到,其他轴以此类推。        同样,加速度传感器数据输出寄存器,也有8个,地址为:0X3B~0X40,通过读取这8个寄存器,就可以读到加速度传感器x/y/z轴的值,比如读x轴的数据,可以通过读取0X3B(高8位)和0X3C(低8位)寄存器得到,其他轴以此类推。        最后,温度传感器的值,可以通过读取0X41(高8位)和0X42(低8位)寄存器得到,温度换算公式为: Temperature = 36.53 + regval/340 其中,Temperature为计算得到的温度值,单位为℃,regval为从0X410X42读到的温度传感器值。 关于MPU6050的基础介绍,我们就介绍到这。MPU6050的详细资料和相关寄存器介绍,请参考光盘:7,硬件资料àMPU6050资料àMPU-6000 and MPU-6050 Product Specification.pdfMPU-6000 and MPU-6050 Register Map and Descriptions.pdf这两个文档,另外该目录还提供了部分MPU6050的中文资料,供大家参考学习。

37.1.2 DMP使用简介

       经过37.1.1节的介绍,我们可以读出MPU6050的加速度传感器和角速度传感器的原始数据。不过这些原始数据,对想搞四轴之类的初学者来说,用处不大,我们期望得到的是姿态数据,也就是欧拉角:航向角(yaw)、横滚角(roll)和俯仰角(pitch)。有了这三个角,我们就可以得到当前四轴的姿态,这才是我们想要的结果。 要得到欧拉角数据,就得利用我们的原始数据,进行姿态融合解算,这个比较复杂,知识点比较多,初学者 不易掌握。而MPU6050自带了数字运动处理器,即DMP,并且,InvenSense提供了一个MPU6050的嵌入式运动驱动库,结合MPU6050DMP,可以将我们的原始数据,直接转换成四元数输出,而得到四元数之后,就可以很方便的计算出欧拉角,从而得到yawrollpitch 使用内置的DMP,大大简化了四轴的代码设计,且MCU不用进行姿态解算过程,大大降低了MCU的负担,从而有更多的时间去处理其他事件,提高系统实时性。 使用MPU6050DMP输出的四元数是q30格式的,也就是浮点数放大了230次方倍。在换算成欧拉角之前,必须先将其转换为浮点数,也就是除以230次方,然后再进行计算,计算公式为:        q0=quat[0] / q30;   //q30格式转换为浮点数        q1=quat[1] / q30;        q2=quat[2] / q30;        q3=quat[3] / q30;        //计算得到俯仰角/横滚角/航向角        pitch=asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3;      //俯仰角        roll=atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3;     //横滚角        yaw=atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3;        //航向角        其中quat[0]~ quat[3]MPU6050DMP解算后的四元数,q30格式,所以要除以一个230次方,其中q30是一个常量:1073741824,即230次方,然后带入公式,计算出欧拉角。上述计算公式的57.3是弧度转换为角度,即180/π,这样得到的结果就是以度(°)为单位的。关于四元数与欧拉角的公式推导,这里我们不进行讲解,感兴趣的朋友,可以自行查阅相关资料学习。        InvenSense提供的MPU6050运动驱动库是基于MSP430的,我们需要将其移植一下,才可以用到STM32F4上面,官方原版驱动在光盘:7,硬件资料àMPU6050资料àDMP资料àEmbedded_MotionDriver_5.1.rar,这就是官方原版的驱动,代码比较多,不过官方提供了两个资料供大家学习:Embedded Motion Driver V5.1.1 API 说明.pdfEmbedded Motion Driver V5.1.1 教程.pdf,这两个文件都在DMP资料文件夹里面,大家可以阅读这两个文件,来熟悉官方驱动库的使用。 官方DMP驱动库移植起来,还是比较简单的,主要是实现这4个函数:i2c_writei2c_readdelay_msget_ms,具体细节,我们就不详细介绍了,移植后的驱动代码,我们放在本例程àHARDWAREàMPU6050àeMPL文件夹内,总共6个文件,如图37.1.2.1所示:  37.1.2.1 移植后的驱动库代码        该驱动库,重点就是两个c文件:inv_mpu.cinv_mpu_dmp_motion_driver.c。其中我们在inv_mpu.c添加了几个函数,方便我们使用,重点是两个函数:mpu_dmp_initmpu_dmp_get_data这两个函数,这里我们简单介绍下这两个函数。        mpu_dmp_init,是MPU6050 DMP初始化函数,该函数代码如下: //mpu6050,dmp初始化 //返回值:0,正常 //    其他,失败 u8 mpu_dmp_init(void) {        u8 res=0;        IIC_Init();            //初始化IIC总线        if(mpu_init()==0)  //初始化MPU6050        {                   res=mpu_set_sensors(INV_XYZ_GYRO|INV_XYZ_ACCEL);//设置需要的传感器               if(res)return 1;               res=mpu_configure_fifo(INV_XYZ_GYRO|INV_XYZ_ACCEL);//设置FIFO               if(res)return 2;               res=mpu_set_sample_rate(DEFAULT_MPU_HZ);       //设置采样率               if(res)return 3;               res=dmp_load_motion_driver_firmware();                 //加载dmp固件               if(res)return 4;               res=dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation)); //设置陀螺仪方向               if(res)return 5;               res=dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT|DMP_FEATURE_TAP| DMP_FEATURE_ANDROID_ORIENT|DMP_FEATURE_SEND_RAW_ACCEL| DMP_FEATURE_SEND_CAL_GYRO|DMP_FEATURE_GYRO_CAL); //设置dmp功能               if(res)return 6;               res=dmp_set_fifo_rate(DEFAULT_MPU_HZ);//设置DMP输出速率(最大200Hz)               if(res)return 7;                 res=run_self_test();               //自检               if(res)return 8;                  res=mpu_set_dmp_state(1);   //使能DMP               if(res)return 9;            }        return 0; }        此函数首先通过IIC_Init(需外部提供)初始化与MPU6050连接的IIC接口,然后调用mpu_init函数,初始化MPU6050,之后就是设置DMP所用传感器、FIFO、采样率和加载固件等一些列操作,在所有操作都正常之后,最后通过mpu_set_dmp_state(1)使能DMP功能,在使能成功以后,我们便可以通过mpu_dmp_get_data来读取姿态解算后的数据了。        mpu_dmp_get_data函数代码如下: //得到dmp处理后的数据(注意,本函数需要比较多堆栈,局部变量有点多) //pitch:俯仰角 精度:0.1°   范围:-90.0° <---> +90.0° //roll:横滚角  精度:0.1°   范围:-180.0°<---> +180.0° //yaw:航向角   精度:0.1°  范围:-180.0°<---> +180.0° //返回值:0,正常    其他,失败 u8 mpu_dmp_get_data(float *pitch,float *roll,float *yaw) {        float q0=1.0f,q1=0.0f,q2=0.0f,q3=0.0f;        unsigned long sensor_timestamp;        short gyro[3], accel[3], sensors;        unsigned char more;        long quat[4];        if(dmp_read_fifo(gyro, accel, quat, &sensor_timestamp, &sensors,&more))return 1;              if(sensors&INV_WXYZ_QUAT)        {               q0 = quat[0] / q30; //q30格式转换为浮点数               q1 = quat[1] / q30;               q2 = quat[2] / q30;               q3 = quat[3] / q30;               //计算得到俯仰角/横滚角/航向角               *pitch = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3;// pitch               *roll = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3;// roll               *yaw= atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3;//yaw        }else return 2;        return 0; }        此函数用于得到DMP姿态解算后的俯仰角、横滚角和航向角。不过本函数局部变量有点多,大家在使用的时候,如果死机,那么请设置堆栈大一点(startup_stm32f40_41xxx.s里面设置,默认是400)。这里就用到了我们前面介绍的四元数转欧拉角公式,将dmp_read_fifo函数读到的q30格式四元数转换成欧拉角。        利用这两个函数,我们就可以读取到姿态解算后的欧拉角,使用非常方便。DMP部分,我们就介绍到这。

37.2 硬件设计

本实验采用STM32F43个普通IO连接MPU6050,本章实验功能简介:程序先初始化MPU6050等外设,然后利用DMP库,初始化MPU6050及使能DMP,最后,在死循环里面不停读取:温度传感器、加速度传感器、陀螺仪、DMP姿态解算后的欧拉角等数据,通过串口上报给上位机(温度不上报),利用上位机软件(ANO_Tech匿名四轴上位机_V2.6.exe),可以实时显示MPU6050的传感器状态曲线,并显示3D姿态,可以通过KEY0按键开启/关闭数据上传功能。同时,在LCD模块上面显示温度和欧拉角等信息。DS0来指示程序正在运行。 所要用到的硬件资源如下: 1)  指示灯DS0 2)  KEY0按键 3) TFTLCD模块 4)  串口 5)  MPU6050     4个,在之前的实例已经介绍过了,这里我们仅介绍MPU6050与探索者STM32F4开发板的连接。该接口与MCU的连接原理图如37.2.1所示:                    37.2.1 MPU6050STM32F4的连接电路图 从上图可以看出,MPU6050通过三根线与STM32F4开发板连接,其中IIC总线时和24C02以及WM8978共用,接在PB8PB9上面。MPU6050的中断输出,连接在STM32F4PC0脚,不过本例程我们并没有用到中断。另外,AD0接的GND,所以MPU6050的器件地址是:0X68 

37.3 软件设计

 软件设计部分请直接下载附件的pdf和实验源码学习

37.4 下载验证

在代码编译成功之后,我们通过下载代码到ALIENTEK探索者STM32F4开发板上,可以看到LCD显示如图37.4.1所示的内容:  37.4.1 程序运行时LCD显示内容 屏幕显示了MPU6050的温度、俯仰角(pitch)、横滚角(roll)和航向角(yaw)的数值。然后,我们可以晃动开发板,看看各角度的变化。 另外,通过按KEY0可以开启或关闭数据上报,开启状态下,我们可以打开:ANO_Tech匿名四轴上位机_V2.6.exe该软件双击后,会弹出一个蓝 {MOD}的小界面,直接关闭即可。然后才会进入主界面),这个软件,接收STM32F4上传的数据,从而图形化显示传感器数据以及飞行姿态,如图37.4.2和图37.4.3所示:


实验详细手册和源码下载地址:http://www.openedv.com/posts/list/41586.htm  正点原子探索者STM32F407开发板购买地址http://item.taobao.com/item.htm?id=41855882779
  
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。