TI TMS320F2806 ECAN自测模式,发送确认位的TA不置位

2019-07-20 16:00发布

// TI File $Revision: /main/4 $// Checkin $Date: December 3, 2004   13:58:42 $//###########################################################################//// FILE:    Example_280xECanBack2Back.c//// TITLE:   DSP280x eCAN Back-to-back transmission and reception in //          SELF-TEST mode//// ASSUMPTIONS:////    This program requires the DSP280x header files.  ////    This progrm uses the peripheral's self test mode. //    Other then boot mode configuration, no other hardware configuration//    is required.    ////    As supplied, this project is configured for "boot to SARAM" //    operation.  The 280x Boot Mode table is shown below.  //    For information on configuring the boot mode of an eZdsp, //    please refer to the documentation included with the eZdsp,  ////       Boot      GPIO18     GPIO29    GPIO34//       Mode      SPICLKA    SCITXDA//                 SCITXB//       -------------------------------------//       Flash       1          1        1//       SCI-A       1          1        0//       SPI-A       1          0        1//       I2C-A       1          0        0//       ECAN-A      0          1        1        //       SARAM       0          1        0  <- "boot to SARAM"//       OTP         0          0        1//       I/0         0          0        0 //////// DESCRIPTION:////    This test transmits data back-to-back at high speed without //    stopping.//    The received data is verified. Any error is flagged. //    MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on....//    This program illustrates the use of self-test mode////###########################################################################// Original Author H.J.//// $TI Release: DSP280x V1.30 $// $Release Date: February 10, 2006 $//###########################################################################

#include "DSP280x_Device.h"     // DSP280x Headerfile Include File#include "DSP280x_Examples.h"   // DSP280x Examples Include File

// Prototype statements for functions found within this file.void mailbox_check(int32 T1, int32 T2, int32 T3);void mailbox_read(int16 i);

// Global variable for this exampleUint32  ErrorCount;Uint32  PassCount;Uint32  MessageReceivedCount;

Uint32  TestMbox1 = 0;Uint32  TestMbox2 = 0;Uint32  TestMbox3 = 0;

void main(void){

    Uint16  j;

// eCAN control registers require read/write access using 32-bits.  Thus we// will create a set of shadow registers for this example.  These shadow// registers will be used to make sure the access is 32-bits and not 16.   struct ECAN_REGS ECanaShadow;

// Step 1. Initialize System Control:// PLL, WatchDog, enable Peripheral Clocks// This example function is found in the DSP280x_SysCtrl.c file.   InitSysCtrl();

// Step 2. Initalize GPIO: // This example function is found in the DSP280x_Gpio.c file and// illustrates how to set the GPIO to it's default state.// InitGpio();  // Skipped for this example  

// For this example, configure CAN pins using GPIO regs here// This function is found in DSP280x_ECan.c   InitECanGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:// Disable CPU interrupts    DINT;

// Initialize PIE control registers to their default state.// The default state is all PIE interrupts disabled and flags// are cleared.  // This function is found in the DSP280x_PieCtrl.c file.   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:   IER = 0x0000;   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR).  // This will populate the entire table, even if the interrupt// is not used in this example.  This is useful for debug purposes.// The shell ISR routines are found in DSP280x_DefaultIsr.c.// This function is found in DSP280x_PieVect.c.   InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:// This function is found in DSP280x_InitPeripherals.c// InitPeripherals(); // Not required for this example

// Step 5. User specific code, enable interrupts:

    MessageReceivedCount = 0;    ErrorCount = 0;    PassCount = 0;

        //InitECana();    // eCAN control registers require 32-bit access.     // If you want to write to a single bit, the compiler may break this    // access into a 16-bit access.  One solution, that is presented here,    // is to use a shadow register to force the 32-bit access.

    // Read the entire register into a shadow register.  This access    // will be 32-bits.  Change the desired bit and copy the value back    // to the eCAN register with a 32-bit write.

    // Configure the eCAN RX and TX pins for eCAN transmissions    EALLOW;    ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;    ECanaShadow.CANTIOC.bit.TXFUNC = 1;    ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

    ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;    ECanaShadow.CANRIOC.bit.RXFUNC = 1;    ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;    EDIS;

    // Disable all Mailboxes    // Since this write is to the entire register (instead of a bit    // field) a shadow register is not required.    ECanaRegs.CANME.all = 0;

        ECanaShadow.CANTRR.all = ECanaRegs.CANTRR.all;        ECanaShadow.CANTRR.all=0xFF;

    ECanaRegs.CANTRR.all = ECanaShadow.CANTRR.all;

    // Mailboxs can be written to 16-bits or 32-bits at a time    // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15     ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0;     ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1;     ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2;     ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3;     ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4;     ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5;     ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6;     ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7;     ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8;     ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9;     ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA;     ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB;     ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC;     ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD;     ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE;     ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF;

    // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31    ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0;     ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1;     ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2;     ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3;     ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4;     ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5;     ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6;     ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7;     ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8;     ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9;     ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA;     ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB;     ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC;     ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD;     ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE;     ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF;


         // Specify that 8 bits will be sent/received    ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;    ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;


友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
1条回答
qaz098xsw
2019-07-20 18:18
    // No remote frame is requested
    // Since RTR bit is undefined upon reset,
    // it must be initialized to the proper value
    ECanaMboxes.MBOX0.MSGCTRL.bit.RTR = 0;      
    ECanaMboxes.MBOX1.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX2.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX3.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX4.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX5.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX6.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX7.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX8.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX9.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX10.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX11.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX12.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX13.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX14.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX15.MSGCTRL.bit.RTR = 0;

    // Configure Mailboxes 0-15 as Tx, 16-31 as Rx
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANMD.all = 0xFFFF0000;

    // Enable all Mailboxes */
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANME.all = 0xFFFFFFFF;



    // Write to the mailbox RAM field of MBOX0 - 15
    ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0;
    ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;


    ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1;
    ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2;
    ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3;
    ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4;
    ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5;
    ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6;
    ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7;
    ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8;
    ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9;
    ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
    ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
    ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
    ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
    ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
    ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF;
    ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;

    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    EALLOW;
    ECanaRegs.CANMIM.all = 0xFFFFFFFF;

    // Request permission to change the configuration registers
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 1;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
    EDIS;

    // Wait until the CPU has been granted permission to change the
    // configuration registers
    // Wait for CCE bit to be set..
    do
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 1 );  

    // Configure the eCAN timing
    EALLOW;
    ECanaShadow.CANBTC.all = ECanaRegs.CANBTC.all;

    ECanaShadow.CANBTC.bit.BRPREG = 9;    // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock
    ECanaShadow.CANBTC.bit.TSEG2REG = 1;//5 ; // to the CAN module. (150 / 10 = 15)
    ECanaShadow.CANBTC.bit.TSEG1REG = 6;//7;  // Bit time = 15
    ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;

    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 0;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
    EDIS;

    // Wait until the CPU no longer has permission to change the
    // configuration registers
    do
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 0 );

    // Configure the eCAN for self test mode
    // Enable the enhanced features of the eCAN.
    EALLOW;
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.STM = 1;    // Configure CAN for self-test mode  
    ECanaShadow.CANMC.bit.SCB = 1;    // eCAN mode (reqd to access 32 mailboxes)
        //ECanaShadow.CANMC.bit.ABO = 1;
        //ECanaShadow.CANMC.bit.SAM = 1;
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;


       
        while(ECanaRegs.CANTRS.all!=0){}

    EDIS;

    // Begin transmitting
    for(;;)                                
    {
       ECanaShadow.CANTA.all=0;
       //ECanaRegs.CANTRS.all = 0x0000FFFF;  // Set TRS for all transmit mailboxes
           ECanaShadow.CANTRS.all = 0;  // Set TRS for all transmit mailboxes
           ECanaShadow.CANTRS.all=0xFFFF;
           ECanaRegs.CANTRS.all=ECanaShadow.CANTRS.all;
          

       while(ECanaShadow.CANTA.all != 0x0000FFFF ) {}  // Wait for all TAn bits to be set..//////一直停在这。。。。求助
       ECanaRegs.CANTA.all = 0x0000FFFF;   // Clear all TAn   
       MessageReceivedCount++;

       //Read from Receive mailboxes and begin checking for data */
       for(j=0; j<16; j++)         // Read & check 16 mailboxes
       {
          mailbox_read(j);         // This func reads the indicated mailbox data
          mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data
       }
    }
}

// This function reads out the contents of the indicated
// by the Mailbox number (MBXnbr).
void mailbox_read(int16 MBXnbr)
{
   volatile struct MBOX *Mailbox;
   Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
   TestMbox1 = Mailbox->MDL.all; // = 0x9555AAAn (n is the MBX number)
   TestMbox2 = Mailbox->MDH.all; // = 0x89ABCDEF (a constant)
   TestMbox3 = Mailbox->MSGID.all;// = 0x9555AAAn (n is the MBX number)

} // MSGID of a rcv MBX is transmitted as the MDL data.


void mailbox_check(int32 T1, int32 T2, int32 T3)
{
    if((T1 != T3) || ( T2 != 0x89ABCDEF))
    {
       ErrorCount++;
    }
    else
    {
       PassCount++;
    }
}


//===========================================================================
// No more.
//===========================================================================

一周热门 更多>