本帖最后由 warship 于 2018-7-16 19:56 编辑
在原子例程的sys.h中,使用宏定义建立了位带操作的基础,
使得操作IO端口可以像51一样实现位操作。
其实深入了解了位带操作的原理,几乎就可以实现对STM32所有外设寄存器的访问,
极端情况下,什么库函数版本,什么寄存器版本都可以不用,直接精准地操控所有寄存器的每一位的读写!!!
知道了STM32将所有外设寄存器的每一位都建立了位带别名区,
你只要再花一点点时间,彻底搞明白下面的三句宏定义,位带操作就都不在话下了:
#define
BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define
MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define
BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
************************************************************************************************
注:本文后文所探索的寄存器位段操作宏定义包含在另文所附范例(外部中断试验的工程包)中,并随时更新。
有需要研究探讨的网友,可移步下载http://www.openedv.com/forum.php ... d=274724&extra=
STM32内部的位段操作机理的实质是:把对别名区的地址的读写--〉映射成对相应的位的读写
而不是反过来(注意理解二者的差别)。
这是STM32设计的一种内部机制,它无须CPU的寄存器(Rn)参与运算,直接在CACHE中完成原子操作,效率较高。
我们有些人经常反过来说:“比特位被映射到别名区”,其实是对这种内部机制规则的反向推算。
那个著名的别名地址计算公式实质是由比特位反推出对应的别名区地址,其目的就是为了
算得别名区地址后,运用STM32的内部机制,通过读写别名区实现对其相对应的比特位的读写。
一周热门 更多>