【ALIENTEK 战舰STM32开发板例程系列连载+教学】第三十五章 DS18B20数字温度传感器实验

2019-07-21 08:37发布

第三十五章  DS18B20数字温度传感器实验

    STM32虽然内部自带了温度传感器,但是因为芯片温升较大等问题,与实际温度差别较大,所以,本章我们将向大家介绍如何通过STM32来读取外部数字温度传感器的温度,来得到较为准确的环境温度。在本章中,我们将学习使用单总线技术,通过它来实现STM32和外部温度传感器(DS18B20)的通信,并把从温度传感器得到的温度显示在TFTLCD模块上。本章分为如下几个部分: 35.1 DS18B20简介 35.2 硬件设计 35.3 软件设计 35.4 下载验证

35.1 DS18B20简介

DS18B20是由DALLAS半导体公司推出的一种的“一线总线”接口的温度传感器。与传统的热敏电阻等测温元件相比,它是一种新型的体积小、适用电压宽、与微处理器接口简单的数字化温度传感器。一线总线结构具有简洁且经济的特点,可使用户轻松地组建传感器网络,从而为测量系统的构建引入全新概念,测量温度范围为-55~+125 ,精度为±05。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~l2位的数字值读数方式。它工作在355 V的电压范围,采用多种封装形式,从而使系统设计灵活、方便,设定分辨率及用户设定的报警温度存储在EEPROM中,掉电后依然保存。其内部结构如图35.1.1所示:
35.1.1 DS18B20内部结构图 ROM中的64位序列号是出厂前被光记好的,它可以看作是该DS18B20的地址序列码,每DS18B2064位序列号均不相同。64ROM的排列是:前8位是产品家族码,接着48位是DS18B20的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5 +X4 +1)ROM作用是使每一个DS18B20都各不相同,这样就可实现一根总线上挂接多个。 所有的单总线器件要求采用严格的信号时序,以保证数据的完整性。DS18B20共有6种信号类型:复位脉冲、应答脉冲、写0、写1、读0和读1。所有这些信号,除了应答脉冲以外,都由主机发出同步信号。并且发送所有的命令和数据都是字节的低位在前。这里我们简单介绍这几个信号的时序: 1)复位脉冲和应答脉冲 单总线上的所有通信都是以初始化序列开始。主机输出低电平,保持低电平时间至少480 us,,以产生复位脉冲。接着主机释放总线,4.7K的上拉电阻将单总线拉高,延时1560 us,并进入接收模式(Rx)。接着DS18B20拉低总线60~240 us,以产生低电平应答脉冲, 若为低电平,再延时480 us 2)写时序 写时序包括写0时序和写1时序。所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,两种写时序均起始于主机拉低总线。写1时序:主机输出低电平,延时2us,然后释放总线,延时60us。写0时序:主机输出低电平,延时60us,然后释放总线,延时2us 3)读时序 单总线器件仅在主机发出读时序时,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。每个读时序都由主机发起,至少拉低总线1us。主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。典型的读时序过程为:主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取单总线当前的电平,然后延时50us 在了解了单总线时序之后,我们来看看DS18B20的典型温度读取过程,DS18B20的典型温度读取过程为:复位àSKIP ROM命令(0XCCà发开始转换命令(0X44à延时à复位à发送SKIP ROM命令(0XCCà发读存储器命令(0XBEà连续读出两个字节数据(即温度)à结束。 DS18B20的介绍就到这里,更详细的介绍,请大家参考DS18B20的技术手册。

35.2 硬件设计

由于开发板上标准配置是没有DS18B20这个传感器的,只有接口,所以要做本章的实验,大家必须找一个DS18B20插在预留的18B20接口上。 本章实验功能简介:开机的时候先检测是否有DS18B20存在,如果没有,则提示错误。只有在检测到DS18B20之后才开始读取温度并显示在LCD上,如果发现了DS18B20,则程序每隔100ms左右读取一次数据,并把温度显示在LCD上。同样我们也是用DS0来指示程序正在运行。 所要用到的硬件资源如下: 1)  指示灯DS0  2) TFTLCD模块 3)  DS18B20温度传感器        前两部分,在之前的实例已经介绍过了,而DS18B20温度传感器属于外部器件(板上没有直接焊接),这里也不介绍。本章,我们仅介绍开发板上DS18B20接口和STM32的连接电路,如图35.2.1所示:
35.2.1 DS18B20接口与STM32的连接电路图 从上图可以看出,我们使用的是STM32PG11来连接U13DQ引脚,图中U13DHT11(数字温湿度传感器)和DS18B20共用的一个接口,DHT11我们将在下一章介绍。DS18B20只用到其中的3个引脚(U13123脚),将DS18B20传感器插入到这个上面就可以通过STM32来读取DS18B20的温度了。连接示意图如图35.2.2所示:
35.2.2 DS18B20连接示意图        从上图可以看出,DS18B20的平面部分(有字的那面)应该朝内,而曲面部分朝外。然后插入如图所示的三个孔内。

35.3 软件设计

打开上一章的工程,首先在HARDWARE文件夹下新建一个DS18B20的文件夹。然后新建一个ds18b20.cds18b20.h的文件保存在DS18B20文件夹下,并将这个文件夹加入头文件包含路径。 打开ds18b20.c在该文件下输入如下代码: [mw_shl_code=c,true]#include "ds18b20.h" #include "delay.h" //复位DS18B20 void DS18B20_Rst(void) { DS18B20_IO_OUT(); //SET PG11 OUTPUT DS18B20_DQ_OUT=0; //拉低DQ delay_us(750); //拉低750us DS18B20_DQ_OUT=1; //DQ=1 delay_us(15); //15US } //等待DS18B20的回应 //返回1:未检测到DS18B20的存在 //返回0:存在 u8 DS18B20_Check(void) { u8 retry=0; DS18B20_IO_IN();//SET PG11 INPUT while (DS18B20_DQ_IN&&retry<200) { retry++; delay_us(1); }; if(retry>=200)return 1; else retry=0; while (!DS18B20_DQ_IN&&retry<240) { retry++; delay_us(1); }; if(retry>=240)return 1; return 0; } //从DS18B20读取一个位 //返回值:1/0 u8 DS18B20_Read_Bit(void) // read one bit { u8 data; DS18B20_IO_OUT();//SET PG11 OUTPUT DS18B20_DQ_OUT=0; delay_us(2); DS18B20_DQ_OUT=1; DS18B20_IO_IN();//SET PG11 INPUT delay_us(12); if(DS18B20_DQ_IN)data=1; else data=0; delay_us(50); return data; } //从DS18B20读取一个字节 //返回值:读到的数据 u8 DS18B20_Read_Byte(void) // read one byte { u8 i,j,dat; dat=0; for (i=1;i<=8;i++) { j=DS18B20_Read_Bit(); dat=(j<<7)|(dat>>1); } return dat; } //写一个字节到DS18B20 //dat:要写入的字节 void DS18B20_Write_Byte(u8 dat) { u8 j; u8 testb; DS18B20_IO_OUT();//SET PG11 OUTPUT; for (j=1;j<=8;j++) { testb=dat&0x01; dat=dat>>1; if (testb) { DS18B20_DQ_OUT=0;// Write 1 delay_us(2); DS18B20_DQ_OUT=1; delay_us(60); } else { DS18B20_DQ_OUT=0;// Write 0 delay_us(60); DS18B20_DQ_OUT=1; delay_us(2); } } } //开始温度转换 void DS18B20_Start(void)// ds1820 start convert { DS18B20_Rst(); DS18B20_Check(); DS18B20_Write_Byte(0xcc);// skip rom DS18B20_Write_Byte(0x44);// convert } //初始化DS18B20的IO口 DQ 同时检测DS的存在 //返回1:不存在 //返回0:存在 u8 DS18B20_Init(void) { RCC->APB2ENR|=1<<8; //使能PORTG口时钟 GPIOG->CRH&=0XFFFF0FFF;//PORTG.11 推挽输出 GPIOG->CRH|=0X00003000; GPIOG->ODR|=1<<11; //输出1 DS18B20_Rst(); return DS18B20_Check(); } //从ds18b20得到温度值 //精度:0.1C //返回值:温度值 (-550~1250) short DS18B20_Get_Temp(void) { u8 temp; u8 TL,TH; short tem; DS18B20_Start (); // ds1820 start convert DS18B20_Rst(); DS18B20_Check(); DS18B20_Write_Byte(0xcc);// skip rom DS18B20_Write_Byte(0xbe);// convert TL=DS18B20_Read_Byte(); // LSB TH=DS18B20_Read_Byte(); // MSB if(TH>7) { TH=~TH; TL=~TL; temp=0;//温度为负 }else temp=1;//温度为正 tem=TH; //获得高八位 tem<<=8; tem+=TL;//获得底八位 tem=(float)tem*0.625;//转换 if(temp)return tem; //返回温度值 else return -tem; }[/mw_shl_code]

该部分代码就是根据我们前面介绍的单总线操作时序来读取DS18B20的温度值的,DS18B20的温度通过DS18B20_Get_Temp函数读取,该函数的返回值为带符号的短整形数据,返回值的范围为-550~1250,其实就是温度值扩大了10倍。保存ds18b20.c,并把该文件加入到HARDWARE组下,然后我们打开ds18b20.h,在该文件下输入如下内容: [mw_shl_code=c,true]#ifndef __DS18B20_H #define __DS18B20_H #include "sys.h" //IO方向设置 #define DS18B20_IO_IN() {GPIOG->CRH&=0XFFFF0FFF;GPIOG->CRH|=8<<12;} #define DS18B20_IO_OUT() {GPIOG->CRH&=0XFFFF0FFF;GPIOG->CRH|=3<<12;} ////IO操作函数 #define DS18B20_DQ_OUT PGout(11) //数据端口 PG11 #define DS18B20_DQ_IN PGin(11) //数据端口 PG11 u8 DS18B20_Init(void); //初始化DS18B20 short DS18B20_Get_Temp(void); //获取温度 void DS18B20_Start(void); //开始温度转换 void DS18B20_Write_Byte(u8 dat); //写入一个字节 u8 DS18B20_Read_Byte(void); //读出一个字节 u8 DS18B20_Read_Bit(void); //读出一个位 u8 DS18B20_Check(void); //检测是否存在DS18B20 void DS18B20_Rst(void); //复位DS18B20 #endif[/mw_shl_code]

关于这段代码,我们就不做多的解释了,接下来我们先保存这段代码,然后打开test.c,在该文件下修改main函数如下: [mw_shl_code=c,true]int main(void) { u8 t=0; short temperature; Stm32_Clock_Init(9); //系统时钟设置 uart_init(72,9600); //串口初始化为9600 delay_init(72); //延时初始化 LED_Init(); //初始化与LED连接的硬件接口 LCD_Init(); //初始化LCD usmart_dev.init(72); //初始化USMART POINT_COLOR=RED;//设置字体为红 {MOD} LCD_ShowString(60,50,200,16,16,"WarShip STM32"); LCD_ShowString(60,70,200,16,16,"DS18B20 TEST"); LCD_ShowString(60,90,200,16,16,"ATOM@ALIENTEK"); LCD_ShowString(60,110,200,16,16,"2012/9/12"); while(DS18B20_Init()) //DS18B20初始化 { LCD_ShowString(60,130,200,16,16,"DS18B20 Error"); delay_ms(200); LCD_Fill(60,130,239,130+16,WHITE); delay_ms(200); } LCD_ShowString(60,130,200,16,16,"DS18B20 OK"); POINT_COLOR=BLUE;//设置字体为蓝 {MOD} LCD_ShowString(60,150,200,16,16,"Temp: . C"); while(1) { if(t%10==0)//每100ms读取一次 { temperature=DS18B20_Get_Temp(); if(temperature<0) { LCD_ShowChar(60+40,150,'-',16,0); //显示负号 temperature=-temperature; //转为正数 }else LCD_ShowChar(60+40,150,' ',16,0); //去掉负号 LCD_ShowNum(60+40+8,150,temperature/10,2,16); //显示正数部分 LCD_ShowNum(60+40+32,150,temperature%10,1,16); //显示小数部分 } delay_ms(10); t++; if(t==20) { t=0; LED0=!LED0; } } }[/mw_shl_code]

至此,我们本章的软件设计就结束了。

35.4 下载验证

在代码编译成功之后,我们通过下载代码到ALIENTEK战舰STM32开发板上,可以看到LCD显示开始显示当前的温度值(假定DS18B20已经接上去了),如图35.4.1所示:
35.4.1 DS18B20实验效果图  该程序还可以读取并显示负温度值的,只是由于本人在广州,是没办法看到了(除非放到冰箱),具备条件的读者可以测试一下。  
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。