本帖最后由 flower_huanghua 于 2014-12-21 08:06 编辑
本系统以TI MSP430F169为核心,电压可预置,步进电压为
0.1V,输出电压范围为20V~36V,输出电流为0~2A。可显示预置电压,实测电压,实测电流,实测效率。该系统主要由最小单片机系统,PWM信号控制芯片TL494,开关电源升压主回路,片上A/D以及片上D/A组成。系统通过键盘预置电压值送给TL494形成闭环反馈回路,采样康铜丝上的电压间接推算出电流并显示。本系统具有调整速度快,精度高,电压调整率低,负载调整率低,效率高,无需另加辅助电源板,输出纹波小等优点。
1.1 主控CPU的选择方案一:采用AT89S51单片机进行控制。51单片机外接A/D和D/A比较简单,但是由于51单片机功能简单,对于这种复杂的系统来说做起来比较复杂。 方案二:采用超低功耗单片机MSP430F169,这是一个完全集成的混合信号系统级MCU芯片。内部集成12的A/D和D/A芯片,且这个单片机资源非常丰富。采用JTAG方式,可通过USB口在线下载调试,使用十分方便,并且低功耗便于整体效率的提高。1.2 DC-DC主回路拓扑的方案选择 DC-DC变换有隔离和非隔离两种。输入输出隔离的方式虽然安全,但是由于隔离变压器的漏磁和损耗等会造成效率的降低,隔离变压器绕制复杂,所以选择非隔离方式,具体有以下几种方案: 方案一:BUCK拓扑。见图1,开关管V1受占空比为D的PWM波的控制,交替导通或截止,再经L和C滤波器在负载R上得到稳定直流输出电压Uo=D*Vd(D≤1),由于输入电压为18V,输出电压20~36V,故不能满足要求。方案二:BOOST拓扑。见图2,开关V1导通时电感储能,截止时电感能量输出。只要电感绕制合理,能达到要求的输出电压30~36V,且输出电压Uo呈现连续平滑的特性。方案三:BUCK-BOOST拓扑。见图3,由于电路属于升降压拓扑,控制比较复杂,由于本题只需升压,故选择方案二。
1.3 控制方法的方案选择方案一:采用单片机产生PWM波,控制开关的导通与截止。根据片内A/D采样后的反馈电压程控改变占空比,使输出电压稳定在设定值。负载电流在康铜丝上的取样经片内A/D后输入单片机,当该电压达到一定值时关闭开关管,形成过流保护。该方案主要由软件实现,控制算法比较复杂,速度慢,输出电压稳定性不好,若想实现自动恢复,实现起来比较复杂。方案二:采用恒频脉宽调制控制器TL494,这个芯片可推挽或单端输出,工作频率为1~300KHz,输出电压可达40V,内有5V的电压基准,死区时间可以调整,输出级的拉灌电流可达200mA,驱动能力较强。芯片内部有两个误差比较器,一个电压比较器和一个电流比较器。电流比较器可用于过流保护,电压比较器可设置为闭环控制,调整速度快。鉴于上面分析,选用方案二。1.4 电流工作模式的方案选择方案一:电流连续模式。电流连续工作状态,在下一周期到来时,电感中的电流还未减小到零,电容的电流能够得倒及时的补充,输出电流的峰值较小,输出纹波电压小。方案二:电流断续模式。断续模式下,电感能量释放完时,下一周期尚未到来,电容能量得不到及时补充,二极管的峰值电流非常大,对开关管和二极管的要求就非常高,二极管的损耗非常大,而且由于电流是断续的,输出电流交流成分比较大,会增加输出电容上的损耗。由于对于相同功率的输出,断续工作模式的峰值电流要高很多,而且输出直流电压的纹波也会增加,损耗大。鉴于上面分析,本设计采用方案一。1.5 提高效率的方案选择影响效率的因素主要包括单片机及外围电路功耗,单片机及外围电路供电电路的效率和DC-DC变换器的效率。故我们采用了超低超低功耗的MSP430单片机,采用了高转换效率的芯片对外围电路进行供电,并且采用低损耗的元器件,和优异的控制策略。二、详细软硬件分析2.1 硬件整体框图设计(见图4):
单片机通过键盘控制电压的步进,经过单片机控制D/A提供一个参考电压,与输出电压的反馈分压进行比较,在TL494内部的电压误差放大器产生一个高或低电平,控制脉宽变化,来达到调整输出电压的变化,反复调整后使输出达到设定得值为止。参考电压输出后电压的反馈调节是由TL494自动调节的,调节速快。2.2 理论分析与参数计算 2.2.1 主回路器件的选择及参数设计: 2.2.1.1 磁芯和线径选择。当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。电流或电压以频率较高的电子在导体中传导时,会聚集于总导体表层,而非平均分布于整个导体的截面积中。线径的选择主要由本系统的开关频率确定。开关频率越大,线径越小,但是所允许经过的电流越小,并且开关损耗增大,效率降低。本系统采用的频率为44K,查表得知在此频率下的穿透深度为0.3304mm,直径应为此深度的2倍,即为0.6608mm。选择的AWG导线规格为21#,直径为0.0785cm(含漆皮).磁芯选择铁镍钼磁芯,该磁芯具有高的饱和磁通密度,在较大的磁化场下不易饱和,具有较高的导磁率、磁性能稳定性好(温升低,耐大电流、噪声小),适用在开关电源上。2.2.2 控制电路设计与参数设计: 控制电路选用TL494来产生PWM波形,控制开关管的导通,Rt,Ct选择为102和24K,频率为 ,为44KHz。软启动电路由14脚和4脚接电阻和电容来实现,通过充放电来实现。启动时间为 = ( =10uF,R=1K)。13号脚接地,采用单管输出,进一步降芯片内部功耗。2.2.3 效率的分析: 输出功率计算公式: ,输入功率计算公式: 。由于题目要求DC/DC变换器(控制器)都只能由Uin端口供电,不能另加辅助电源,所以单片机及一些外围电路消耗功耗要尽量的低。为此,在设计本系统时单片机采用超低功耗单片机MSP430F169,该系统集成了8路12位A/D和两路12位D/A.减少了外加A/D和D/A的功耗。提高效率主要是要降低变换器的损耗,变换器的损耗主要有MOSFET导通损耗, MOSFET 开关损耗 MOSFET 驱动损耗,二极管的损耗、输出电容的损耗,和控制部分的损耗,这些损耗可以通过降低开关频率等方法来降低。各级损耗的计算方法如下:1.导通损耗: ;2.开关损耗: ;3.门级驱动损耗: ;4.二极管的损耗: ;5.输出电容的损耗: 2.2.4 保护电路设计与参数设计:康铜电阻的大小选择:康铜丝主要起两个作用,过流保护和测试负载电流。康铜丝接在整流输入地和负载地之间,越小越好,这样会使两个地之间的电压很小。但是如果太小由于干扰问题会造成过流保护的误判,并且对于后级运放的要求比较高,经过实验,选择0.1欧姆的电阻效果比较好。由于电阻太小,难以测量,所以先测得1欧姆的电阻,然后截取其长度的十分之一。 TL494片内有电流误差放大器。可用于过流保护。康铜电阻上的压降,与预先调好的值进行比较.若电流过大,输出高电平,阻止PWM信号产生,开关管处于关断状态,使输出电压降低,形成保护功能。一旦输出电压降低,导致输出电流降低,检测电压降低,电流误差放大器就会输出低电平,重新产生PWM波形,所以该电路具有自恢复功能。2.2.5 数字设定及显示电路的设计:由于在输出端采样时测得的反馈电压为输出电压的二十四分之一,即分压为1.5V时输出为36V,分压为0.834V时输出为30V,设计中采用了12位D/A转换精度为0.61mV(参考电压为2.5V),直接输出给TL494提供参考电压。此外还设置了三个A/D芯片,分别采集输出电压,输出电流,和输入电流。为了降低功耗,设计中采用了128*64,屏幕大,显示内容多,当背光不使用时自动关闭,以降低功耗。2.3 硬件电路设计2.3.1 主电路图如下:
2.3.2 主CPU PCB
图如下:
2.4 软件设计本设计的软件设计比较简单,完全出于效率的要求,把外围电路设计的尽可能的少,所以单片机驱动外围芯片均采用I/O口直接控制,没有采用总线方式。整体软件设计流程图如图6。
一周热门 更多>