0 引言
超声技术在工业中的应用开始于20世纪初,随着超声技术的成熟,其应用越来越广泛。在控制方式上,传统的感应加热电源控制采用模拟技术控制,存在元件易老化、工作点漂移和一致性差等原因引起的产品升级换代困难等缺点。随着数字集成芯片、单片机、DSP、FPGA的出现,使感应加热电源数字化成为一种趋势,具有控制灵活,系统升级方便,只要修改相应的控制算法,而不必对硬件电路加以很大的改动等优点。随着电力电子器件的发展,电路控制技术也在飞速发展。控制电路最初以相位控制为手段、由分立元件组成,发展到集成控制器,再到计算机控制,向着高频率、低损耗和数字化的方向发展。超声波发生器应用数字化控制技术一般有3种形式:采用MCU控制、采用DSP控制、采用FPGA控制。相比较而言,DSP适合取样速率低和软件复杂程度高的场合;而当系统取样速率高(MHz级),数据率高(20 MB/s以上),条件操作少,任务较固定时,采用FPGA更有优势的功率转换主电路,解决由于负载温度变化等原因产生谐振频率的漂移,保证系统的高效率。这里研究了粗精复合的频率跟踪方案,采用扫频方法实现频率粗跟踪,采用硬件锁相环实现精跟踪。这两种方法的结合既保证在较宽的频率变化范围内实现频率自动跟踪,又保证跟踪的快速、准确。为适应负载变化的要求,采用软开关的PS-PWM控制方法,使系统的输出功率连续可调。
1 主电路拓扑分析
超声电源的主电路采用全桥逆变拓扑结构,如图1所示。其中:Z1~Z4为功率主开关管;D1~D4为Z1~Z4内部反并联寄生二极管;C1~C4为外接并联电容或者功率管的寄生电容;T为高频脉冲变压器;L0为串联调谐匹配电感;PZT为超声换能器。
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
一周热门 更多>