引言
近几年来,随着电力电子器件和现代控制理论的迅速发展,无刷直流电动机由于没有接触式换向装置,不存在换向引起的火花,其具有效率高,转速不受机械换向所限制,可维护性强,安全性高等诸多优点,而被人们广泛应用于光驱、智能机器人、电动交通工具等领域。DSP(数字信号处理器)则以其高速的数据处理能力、丰富的内部资源、集成度高和功耗低等特点,已广泛应用在控制领域中。本文提出了一种基于DSP的无刷直流电机控制系统的设计方案。该设计结合模糊控制方法来实现无刷直流电动机的智能化控制。
1 无刷直流电机的数学模型
根据物理学公式,单根导体在磁场中切割磁力线运动时,所产生的电动势e为:
式中,B为磁场感应强度,l为磁场中导体的有效长度,v为导体垂直于磁力线运动的线速度。在电机中,v与转速n的关系为:
这样,无刷直流电机在运行过程中所感应产生的感应电动势大小为:
式中,E为无刷直流电动机产生的感应电动势;p为电机的极对数;α为极弧系数;W为点数绕组每一相的绕线匝数;ψ为每一极的磁通量;n为电机的转速。
假设无刷直流电动机的绕组采用三相星型结构,定子三相完全对称,空间上互差120°的电角度,三相绕组电阻的电感量参数相同。同时忽略电枢绕组之间产生的互感,电机的气隙磁导均匀,磁路不饱和,并忽略涡流损耗。则无刷直流电动机的数学模型如下:
2.3 DSP部分设计
根据对电机数学模型进行的分析。为实现对无刷直流电机转速的高精度可靠控制,本系统采用T1公司成熟的DSP产品TMS320LF2407。该数字信号处理器不但具有高速信号处理和数字功能所必需的体系结构的特点,而且其低成本、低功耗及高性能的处理能力以及丰富的内部资源,也对电机的数字化控制非常有用,此外,该数字信号处理器(DSP)内部还自带高精度10位ADC模数转换模块和脉冲调制PWM模块。
2.4 A/D信号检测设计
通过专用高端电流测量芯片AD8206以及高精度采样电阻可以完成对A/D信号的检测功能。即由三相功率变换桥路引出的Coil_A、Coil_ B、Coil_C分别经过高精度超低阻值的0.01Ω采样电阻后,将引出U、V、W三线分别接至定子电枢的A、B、C三相线圈上,这样即可通过检测采样电阻之上的电压来检测出各相电枢绕组上通过的电流。测试每相相对于地电压的方法比较简单,可以用电阻分压法测试,A、B、C三相线圈上的电压在U、V、W测试点上也可采用电阻分压的方法得到,图3所示是A相电压电流的采样电路。
一周热门 更多>