摘要
针对电动汽车动力电池组长期不能完全充满而影响其使用寿命,设计了一种光伏电池车载充电装置,能够对动力电池组长时间小电流涓流充电以改善其充电状态,同时部分补充电池组能量,延长电动汽车续航里程与使用寿命。采用TMS320F2808 DSP芯片作为控制核心、以BOOST升压变换器作为主电路的硬件设计方案,完成了主要元器件的选型和参数整定,对设计参数进行了仿真验证和优化,并研制了样机。制定了高性能算法与控制策略,既能完成光伏电池最大输出功率的跟踪,又能提高电池的充电效率,并基于MATLAB平台完成了DSP嵌入式应用程序设计,生成代码。配备了车载监控系统,实现良好的人机交互功能。实验结果表明:该装置性能稳定,光伏电池最大输出功率跟踪速度快,稳态误差小,效率高,并具有防止电池组过电保护,人性化的人机交互平台,有很强的实用性。
3. 系统方案3.1 系统总体结构电动汽车光伏车载充电总成系统主要涉及以下几部分:动力电池组、光伏电池、光伏电池充电装置、车载仪表(车载操作系统)、CAN总线、USB-CAN适配器、电池管理系统。系统框图如图1所示:
图1电动汽车光伏车载充电总成系统
光伏电池模块:将两块光伏电池串联使用,用升压直流变换器将光伏电池输入的能量泵升到电池组电压。由于在光伏电池额定工作时所需的升压比为1.8,在光照较弱时升压比也不会超过3,故选择BOOST升压直流变换器作为主电路,其结构简单,转换效率高,控制容易。
光伏电池充电装置是本系统中最主要的部分,是一个高效率智能的DC/DC变换器,采用美国Texas Instruments公司的TMS320F2808数字信号处理器芯片,它是一款功能强大的32位定点DSP芯片,有高速的12位A/D转换器,强大的数字处理和事件管理能力,特别适用于有大批量数据处理的测控场合。制定了高性能算法与控制策略,既能完成光伏电池最大输出功率的跟踪,又能使磷酸铁锂动力电池组的使用达到最佳状态。
上位机软件:光伏充电监控系统。该系统是基于LABVIEW平台开发的。
图3 CAN通讯系统
统硬件设计
本系统设计并制作一个光伏电池充电装置,输出电压范围为40V-60V;能够跟踪光伏电池最大输出功率,误差小于5%;变换器效率达到85%;能够输出稳定的电压和电流,波动幅度小于5%;能够检测电池组的充电电压和电流,误差小于5%;具有防止电池组过充电功能和过流保护。系统工作原理图如图4所示。
图4电动汽车用光伏车载充电工作原理图
硬件设计主要展开了以下研究:
1) 变换器主电路参数的设计与器件选型。根据太阳能电池的输出电压范围、最大功率点电压和电池组充电电压的要求,选取合适的开关器件和驱动控制电路参数,减少开关器件的开关损耗并使其温升小于50℃,从而提高变换器的运行效率。合理布局PCB,减小信号受到的电磁干扰,保证开关器件准确的开断使其稳定运行而不被烧坏,延长使用寿命。
2) 变换器输入、输出直流滤波。由于变换器的输入或输出电流是断续的脉冲电流,而光伏电池的输出电流为连续值,为了增加光伏电池的利用率,需设置输入滤波器;为了达到恒压充电的目标,在输出端也需设置滤波器。设计合适的滤波器使输入、输出电流波动幅度小于5%,同时使滤波电容和电感的功耗也尽量小。
3) 变换器输出电流、电压检测。变换器的输出电流、电压是判断电池组的剩余容量的标准。设计准确的检测电路,使检测值的误差小于5%,并用高精度的电压、电流表校正。
4.1 BOOST电路的改进基本的BOOST变换器由开关器件K1、储能电感L1、二极管D1、旁路电容C1及输出滤波电容C2组成,如图5所示。当开关器件导通,二极管反向截止,电源向储能电感L1充电,
图5 BOOST变换器电路结构
流过电感L1的电流增加,电容C2储存的能量向负载供电。当开关器件断开时,电感L1中储存的能量经二极管向负载供电,并同时向电容C2充电,电感L1中能量减少,其电流也减小。稳态时,若储能电感L1足够大,则输入电流Iin变化很小,可视为恒定值;若输出滤波电容C2足够大,则输出电压UO和输出电流IO的变化也很小,也可视为恒定值。
本设计中,负载为磷酸铁锂电池组,其内阻很小,只有几十毫欧。若直接将图3所示的BOOST变换器的负载电阻RL改为磷酸铁锂电池组,则输送到电池组中的电流,在Saber仿真软件中的仿真结果为图6中的点画线所示,其脉动幅值很大,滤波电容C2没有起到滤波的作用。
图6 BOOST电路改进前后输出电流的波形
从图6可知,变换器最终输出的充电电流不仅有很大的尖峰电流,而且还有反向放电的时刻,这对于电池组的使用寿命和输出电流的检测都是不利的。本文对其进行了简单的改进,在电池滤波电容C2的后面再串联一个电感值较小的平波电感L2,来滤除输出电流的尖峰。
图 7 改进后的BOOST变换电路
改进后的电路如图7所示,电阻RO为滤波电感L2和电池组的内阻之和,约为0.1Ω。经Saber软件仿真,改进后的充电电流如图6中的实线所示,其波动幅度较小,近似为直线。
4.2 主电路开关器件的参数设计及选型为了提高主电路的开关频率,减小滤波电感的体积,提高整体的效率,本文选择功率MOSFET作为主开关器件。变换器的最大输出功率Pmax为150W,最大输入电压Uinmax为40V,最大输出电压Uomax为60V,额定工作时输入电压
为35V,留一定裕量取MOSFET的额定电压为100V,流过MOSFET的电流有效值为:
(4.1)
为了提高变换器的转换效率,降低MOSFET的功耗和利于其散热,使逆变器额定工作时MOSFET的功耗小于1W。由于MOSFET开通和关断速度快,设开关损耗等于导通损耗,则其导通电阻:
(4.2)
根据以上要求,本文选择了国际半导体公司的IRFB4110型的功率MOSFET,其额定运行电压为100V,导通电阻为4.5mΩ。
一周热门 更多>