主函数如下:
Nucleo例程
tiM_PWMOutput中4路PWM通道对应哪几个口?
/**
******************************************************************************
* @file TIM/TIM_PWMOutput/Src/main.c
* @author MCD Application Team
* @version V1.0.0
* @date 18-June-2014
* @brief This sample code shows how to use STM32F0xx TIM HAL API to generate
* 4 signals in PWM.
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F0xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_PWMOutput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
#define PERIOD_VALUE (uint32_t)(666 - 1) /* Period Value */
#define PULSE1_VALUE (uint32_t)(PERIOD_VALUE/2) /* Capture Compare 1 Value */
#define PULSE2_VALUE (uint32_t)(PERIOD_VALUE*37.5/100) /* Capture Compare 2 Value */
#define PULSE3_VALUE (uint32_t)(PERIOD_VALUE/4) /* Capture Compare 3 Value */
#define PULSE4_VALUE (uint32_t)(PERIOD_VALUE*12.5/100) /* Capture Compare 4 Value */
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Counter Prescaler value */
uint32_t uhPrescalerValue = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F0xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Low Level Initialization
*/
HAL_Init();
/* Configure LED2 */
BSP_LED_Init(LED2);
/* Configure the system clock to 48 MHz */
SystemClock_Config();
/* Compute the prescaler value to have TIM2 counter clock equal to 16000000 Hz */
uhPrescalerValue = (uint32_t)(SystemCoreClock / 16000000) - 1;
/*##-1- Configure the TIM peripheral #######################################*/
/* -----------------------------------------------------------------------
TIM2 Configuration: generate 4 PWM signals with 4 different duty cycles.
In this example TIM2 input clock (TIM2CLK) is set to APB1 clock (PCLK1),
since APB1 prescaler is equal to 1.
TIM2CLK = PCLK1
PCLK1 = HCLK
=> TIM2CLK = HCLK = SystemCoreClock
To get TIM2 counter clock at 16 MHz, the prescaler is computed as follows:
Prescaler = (TIM2CLK / TIM2 counter clock) - 1
Prescaler = ((SystemCoreClock) /16 MHz) - 1
To get TIM2 output clock at 24 KHz, the period (ARR)) is computed as follows:
ARR = (TIM2 counter clock / TIM2 output clock) - 1
= 665
TIM2 Channel1 duty cycle = (TIM2_CCR1/ TIM2_ARR + 1)* 100 = 50%
TIM2 Channel2 duty cycle = (TIM2_CCR2/ TIM2_ARR + 1)* 100 = 37.5%
TIM2 Channel3 duty cycle = (TIM2_CCR3/ TIM2_ARR + 1)* 100 = 25%
TIM2 Channel4 duty cycle = (TIM2_CCR4/ TIM2_ARR + 1)* 100 = 12.5%
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f0xx.c file.
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
----------------------------------------------------------------------- */
/* Initialize TIMx peripheral as follows:
+ Prescaler = (SystemCoreClock / 16000000) - 1
+ Period = (666 - 1)
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Instance = TIMx;
TimHandle.Init.Prescaler = uhPrescalerValue;
TimHandle.Init.Period = PERIOD_VALUE;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.RepetitionCounter = 0;
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the PWM channels #########################################*/
/* Common configuration for all channels */
sConfig.OCMode = TIM_OCMODE_PWM1;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
/* Set the pulse value for channel 1 */
sConfig.Pulse = PULSE1_VALUE;
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Set the pulse value for channel 2 */
sConfig.Pulse = PULSE2_VALUE;
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Set the pulse value for channel 3 */
sConfig.Pulse = PULSE3_VALUE;
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Set the pulse value for channel 4 */
sConfig.Pulse = PULSE4_VALUE;
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Start PWM signals generation #######################################*/
/* Start channel 1 */
if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/* Start channel 2 */
if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/* Start channel 3 */
if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
/* Start channel 4 */
if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_4) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED2 on */
BSP_LED_On(LED2);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI48)
* SYSCLK(Hz) = 48000000
* HCLK(Hz) = 48000000
* AHB Prescaler = 1
* APB1 Prescaler = 1
* HSI Frequency(Hz) = 48000000
* PREDIV = 2
* PLLMUL = 2
* Flash Latency(WS) = 1
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Select HSI48 Oscillator as PLL source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI48;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK and PCLK1 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1)!= HAL_OK)
{
Error_Handler();
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d
", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
是的,感觉不错,刚接触
一周热门 更多>