如何利用一种高度集成的架构来应对小尺寸无线电设计

2019-07-16 08:39发布

各位大神,能否介绍一种新型高中频架构,可显著削减接收机和发射机的尺寸、重量、功耗与成本,而系统规格不受影响?
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
6条回答
杀狼000
2019-07-16 20:41
高中频架构接收机频率规划

高中频架构的优点之一是能够调谐IF。当试图创建一个能避开干扰杂散的频率规划时,这种能力特别有用。当接收到的信号在混频器中与LO混频并产生一个非IF频段内目标信号音的m × n杂散时,就会引起干扰杂散。

混频器依据公式m × RF ± n × LO产生输出信号和杂散,其中m和n为整数。接收信号产生的m × n杂散可能落在IF频段中;某些情况下,目标信号音会引起一个特定频率的交越杂散。

例如,若观测一个设计为接收12 GHz至16 GHz信号且IF为5.1 GHz的系统,如图7所示,则引起带内杂散的m × n镜像频率可依据下式确定:







图7. 12 GHz至16 GHz Rx Tx高中频架构

在此式中,RF为混频器输入端的RF频率,其导致一个信号音落在IF中。试举一例,假设接收机调谐到13 GHz,这意味着LO频率为18.1 GHz (5.1 GHz + 13 GHz)。将这些值代入上式,并允许m和n在0到3的范围内变动,则可得到如下RF公式:
结果如下表所示。


表1. 18.1 GHz LO的M × N杂散表            mnRFsum (GHz)RFdif (GHz)1123.20013.0001241.30031.1001359.40049.2002111.6006.5002220.65015.5502329.70024.600317.7334.3333213.76710.3673319.80016.400

表中的第一行(黄 {MOD}亮显)显示所需的13 GHz信号,它是混频器中的1 × 1的结果。其他亮显单元显示可能有问题的带内频率,它们可能表现为带内杂散。例如,15.55 GHz信号在12 GHz到16 GHz的目标范围内。输入端一个15.55 GHz信号音与LO混频,产生一个5.1GHz信号音(18.1 × 2–15.55 × 2 = 5.1 GHz)。其他未亮显行也可能造成问题,但由于其在带外,可以通过输入带通滤波器滤除。

杂散水平取决于多个因素。主要因素是混频器的性能。混频器从根本上说是一个非线性器件,其内部会产生许多谐波。根据混频器内部二极管的匹配精度和混频器杂散性能的优化程度,可确定输出杂散水平。数据手册通常会提供一个混频器杂散图表,它可以帮助确定杂散水平。表2所示的例子是混频器HMC773ALC3B的杂散水平表。该表给出的是杂散相对于1 × 1目标信号音的dBc水平。

表2. HMC773ALC3B混频器杂散表            
            n × LO012345m × RF0—14.23532.150.361.41 –1.9—17.731.132.861.228355.36059.66 73.787.9382.686.16868.561.985.947686.782.177.474.975.8569.374.785.38785.162

利用此杂散表并扩展表1中所做的分析,我们便可全面了解哪些m × n镜像音可能会干扰接收机,以及其水平是多少。可以生成一个电子表格,其输出与图8所示相似。





图8. 12 GHz至16 GHz Rx的m × n镜像

此图中的蓝 {MOD}部分表示所需带宽。线段表示不同的m × n镜像及其水平。由此图很容易知道,混频器之前需要满足什么样的滤波要求才能消除干扰。本例中有多个镜像杂散落在带内,无法滤除。下面将说明如何利用高中频架构的灵活性来绕开其中的一些杂散,这是超外差架构做不到的。
<p>

一周热门 更多>