P= [2 1 4 2 1 3 1 3 1 3 1 1 2 1 1 1 4 2 1 3 1 2 1 4 2 1 3 1 2 1 4 2 1 3 1 3 1 3 1 1 2 1 1 1 4 2 1 3 1 2 1 4 2 1 3 1 2 1 4 2 1 3 1 3 1 3 1 1 2 1 1 1 4 2 1 3 1 2 1 4 2 1 3 1 2 1 4 2 1 3 1 3 1 3 1 1 2 1 1 1 4 2 1 3 1 2 1 4 2 1 3 1;
3 0 3 1 2 0 3 3 0 3 1 2 0 3 3 0 2 1 2 0 3 3 0 1 0 2 0 2 3 0 3 1 2 0 3 3 0 3 1 2 0 3 3 0 2 1 2 0 3 3 0 1 0 2 0 2 3 0 3 1 2 0 3 3 0 3 1 2 0 3 3 0 2 1 2 0 3 3 0 1 0 2 0 2 3 0 3 1 2 0 3 3 0 3 1 2 0 3 3 0 2 1 2 0 3 3 0 1 0 2 0 2;
1 1 0 0 1 1 0 1 4 0 0 3 1 0 1 5 0 0 4 2 0 2 3 0 0 0 3 0 1 1 0 0 1 1 0 1 4 0 0 3 1 0 1 5 0 0 4 2 0 2 3 0 0 0 3 0 1 1 0 0 1 1 0 1 4 0 0 3 1 0 1 5 0 0 4 2 0 2 3 0 0 0 3 0 1 1 0 0 1 1 0 1 4 0 0 3 1 0 1 5 0 0 4 2 0 2 3 0 0 0 3 0];
T= [1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0;
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0;
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0;
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1];
net=newff(minmax(P),[3,8,7],{'logsig','tansig','logsig'},'traingdx');
net.trainParam.show=49;
net.trainParam.lr=0.05;
net.trainParam.epochs=2500;
net.trainParam.goal=0.001;
traingdx(net,P,T);
请问为什么我的网络训练总是不正确
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
net=train(net,p,t)
一周热门 更多>