系统工程师们,真正软件定义无线电究竟是如何?

2019-07-17 17:56发布

鉴于SDR的接收器仅仅由一个低噪声放大器(LNA)和一个滤波器和ADC组成,随着半导体行业在RF采样模数转换器(ADC)领域的进步,那些预见到真正软件定义无线电(SDR)的系统工程师们到底有哪些设想?


友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
4条回答
kingnet_520888
2019-07-18 02:56
RF采样ADC有两个明显优势,一是将大量信号带宽数字化,二是直接在RF上捕捉信号,从而简化了信号链。


但它还有一个鲜少被提及的优势,即在所需信号波段远远小于采样率时,它能够使用快速采样率进行频率规划。选择一个至少比信号带宽快5至10倍的采样率可以使系统设计人员能够规划那些无法滤除的带内干扰源的负面影响,因此可实现更好的动态范围。


与外差接收器正好相类似的是,ADC的无杂散动态范围(SFDR)性能限制了对低输入信号的检测功能(图3)。所需带宽内的干扰源(或者是通信基础设施中的拦截器)是无法滤除的。这就要求信号链降低增益来避免ADC饱和。信号链中减少的增益会削弱把小信号(例如,“有用信号B”)提升到ADC噪底以上的能力,因而不能进行适当的检测。带内干扰源的谐波杂散还会落在有用信号的顶部,从而限制了接收器的灵敏度。这是军用雷达(用来侦测小型物体),软件定义无线电和蜂窝基站中的一个关键要素。


在过采样配置中使用RF采样ADC(诸如ADC12J4000)可以避免干扰源的限制谐波对小幅有用信号的阻断。例如,200MHz的所需带宽可在中央频率为1.75GHz的RF上,以4Gsps的采样率进行采样。前四个通常是高速ADC中最差的谐波
(HD2,HD3,HD4和HD5),以及其他来自带内干扰源的交叉杂散就全都落在了波段之外(图4)。
ADC采样率的加快也放宽了对为驱动放大器所需的对抗混叠滤波器的要求。200MHz波段可以用500Msps ADC进行采样,但是将会需要非常精确的滤波器,这是因为下一个图像只隔了50MHz(假定波段在那奎斯特区域的中心)。相反地,采样率为4Gsps,以1.75GHz为中心的同一波段,就只需要和针对最近距离大约为300MHz的图像(混叠=2.15-2.35GHz,交叉图像=1150-1350MHz)同样的波段外滤波器衰减技术规格,对滤波器的要求就放宽了许多。


在成功使用频率规划后,SFDR性能只受到较高阶谐波(不是HD2-5中的任何一个)的限制。可以通过采用小信号抖动来进一步改进这些较高阶杂散。兆采样RF ADC的高采样率提供很多“未占用”频谱,可将波段受限抖动放置在其中,而又不会影响到任何有用信号(图5)。
抖动是软件定义无线电中的常用技术,并且可将杂散底噪改进5至10dB。

一周热门 更多>