快速幂取模算法

2019-04-13 12:21发布

参考文章来源:Reait  Home(http://www.reait.com/blog.html) 转载请注明,谢谢合作。 
在Miller Rabbin测试素数,就用到了快速幂取模的思想。这里总结下。
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 
算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化
代码如下:

int modexp_simple(int a,int b,int n) { int ret = 1; while (b--) { ret = a * ret % n; } return ret; } 算法2:另一种算法利用了二分的思想,可以达到O(logn)。
可以把b按二进制展开为:b = p(n)*2^n  +  p(n-1)*2^(n-1)  +…+   p(1)*2  +  p(0)
其中p(i) (0<=i<=n)为 0 或 1

这样 a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))
               =  a^(p(n)*2^n)  *  a^(p(n-1)*2^(n-1))  *...*  a^(p(1)*2)  *  a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) =  a^0  =  1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i)  = a^(2^(i-1)  * 2) = (  a^(  p(i)  *  2^(i-1)  )  )^2
(这里很重要!!具体请参阅秦九韶算法:http://baike.baidu.com/view/1431260.htm 利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1)))  %c

于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果 即二进制扫描从最高位一直扫描到最低位
实例代码:递归 //计算a^bmodn int modexp_recursion(int a,int b,int n) { int t = 1; if (b == 0) return 1; if (b == 1) return a%n; t = modexp_recursion(a, b>>1, n); t = t*t % n; if (b&0x1) { t = t*a % n; } return t; }

实例代码2:非递归优化 
  原文:http://kmplayer.javaeye.com/blog/601578