快速幂取模算法【模板】

2019-04-13 12:21发布

快速幂取模其实是a^b%c,这就是著名的RSA公钥加密的方法,当a,b都很大的时候,直接求是不可取的,所以就用到了快速幂取模。 首先你得明白他的原理,其实是用到了二分的思想,把b按照二进制展开 b = p(n)*2^n  +  p(n-1)*2^(n-1)  +…+   p(1)*2  +  p(0)。其中p(i) (0<=i<=n)为 0 或 1。
所以此时a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))=  a^(p(n)*2^n)  *  a^(p(n-1)*2^(n-1))  *...*  a^(p(1)*2)  *  a^p(0); 对于p(i)=0的情况不用处理,因为a^(p(i) * 2^(i-1) ) =  a^0  =  1; 所以我们需要考虑的仅仅是p(i)=1的情况,化简得: a^(2^i)  = a^(2^(i-1)  * 2) = (  a^(  p(i)  *  2^(i-1)  )  )^2
http://baike.baidu.com/view/1431260.htm】此处有详细的介绍。
这里给出非递归的方法: long long modexp(long long a, long long b, int mod) { long long res=1; while(b>0) { //a=a%mod;(有时候n的值太大了会超出long long的储存,所以要先取余) if(b&1)//&位运算:判断二进制最后一位是0还是1,&的运算规则为前后都是1的时候才是1; res=res*a%mod; b=b>>1;//相当于除以2; a=a*a%mod; } return res; }