快速幂及快速幂取模运算

2019-04-13 13:25发布

        快速幂原文        快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记。   首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:   假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时                         11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a2^0*a2^1*a2^3,也就是a1*a2*a8 ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子....不急,下面会有详细解释。                                                   由于是二进制,很自然地想到用位运算这个强大的工具:&和>>,&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。>>运算比较单纯,二进制去掉最后一位,不多说了,先放代码再解释。   int Pow(int a, int b) { int ans = 1; while (b) { if (b & 1) ans *= a ; a *= a; b >>= 1; } return ans; }     代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是 a^(2^0)*a^(2^1)*a^(2^3),是从左向右的。我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。   其中要理解base*=base这一步:因为 base*base==base2,下一步再乘,就是base2*base2==base4,然后同理  base4*base4=base8,由此可以做到base-->base2-->base4-->base8-->base16-->base32.......指数正是 2^i ,再看上面的例子,a¹¹= a1*a2*a8,这三项就可以完美解决了,快速幂就是这样。   快速幂取模运算原理:ab mod c=(a mod c)(b mod c)mod c ;   代码: int PowMod(int a, int b, int c) { int ans = 1; a %= c; while (b) { if (b & 1) ans = (ans * a) % c; a = (a * a) % c; b >>= 1; } return ans; }