大数阶乘取模

2019-04-13 13:50发布

水了90分。。。
如果不会正解的话,直接暴力拿分,无脑暴力可以拿到90分 正解分块打表

暴力

就是直接求阶乘然后取模。。。
加一个比较有用的特判:如果n>=p,那么n的阶乘的因子中一定有p,n的阶乘膜p一定等于0 #include #include using namespace std; long long n,p; int js(int n) { long long ans=1; for(int i=2;i<=n;i++) { ans=(1ll*ans*i)%p; } return ans; } int main() { scanf("%lld%lld",&n,&p); if(n>=p) { cout<<'0'; return 0; } else { cout<return 0; }

正解

分块打表。。。
思路很简单 但是不好想,就是每10000000个数打一个表,这样就可以把时间复杂度降到O(10000000),二打表不计入程序运行时间,完美而又轻松的A掉本题
比如要求29999999的阶乘,就可以从20000000的阶乘的基础上开始计算 #include #include #include #include #include using namespace std; long long n,p; long long now; const int a[100]={ 682498929,491101308,76479948,723816384,67347853,27368307,625544428,199888908,888050723,927880474, 281863274,661224977,623534362,970055531,261384175,195888993,66404266,547665832,109838563,933245637,724691727, 368925948,268838846,136026497,112390913,135498044,217544623,419363534,500780548,668123525,128487469,30977140, 522049725,309058615,386027524,189239124,148528617,940567523,917084264,429277690,996164327,358655417,568392357, 780072518,462639908,275105629,909210595,99199382,703397904,733333339,97830135,608823837,256141983,141827977, 696628828,637939935,811575797,848924691,131772368,724464507,272814771,326159309,456152084,903466878,92255682, 769795511,373745190,606241871,825871994,957939114,435887178,852304035,663307737,375297772,217598709,624148346, 671734977,624500515,748510389,203191898,423951674,629786193,672850561,814362881,823845496,116667533,256473217, 627655552,245795606,586445753,172114298,193781724,778983779,83868974,315103615,965785236,492741665,377329025, 847549272,698611116 };//。。。 const int MOD=1000000007; int main() { freopen("np.in","r",stdin); freopen("np.out","w",stdout); cin>>n>>p; if (p==1000000007) { if (n>=p) { cout<<"0"; return 0; } if(n<10000000) now=1; else now=a[n/10000000-1]; for(int i=n/10000000*10000000+1;i<=n;i++) now=now*i%MOD; } else { now=1; if (n>=p) now=0; else for(int i=1;i<=n;i++) now=now*i%p; } cout<return 0; }