- 利用欧拉定理找一个0~9之间的数a,使得7^1000模10与a同余(注意这等于7^1000的十进制展开的最后一位)
Euler' sTheorem:
for every (a,n) that are relatively prime to Ø(n) is a conginent model.
a ^Ø(n) =1 mod n
This condition, a is between 0 to 9 that is conginent model to 7^1000 mod 10
such that 7 Ø(0~9) =1 mod 10
=7^1000 mod 10
=7^5 * 7^200 mod 10
=(7^5 mod 10)^200
=1
Therefore , a=1
- 利用欧拉定理,找一个位0~28之间的整数x,使得x^85 模35与6同余