Problem F: Colossal Fibonacci Numbers!
The
i'th Fibonacci number
f (i) is recursively defined in the following way:
- f (0) = 0 and f (1) = 1
- f (i+2) = f (i+1) + f (i) for every i ≥ 0
Your task is to compute some values of this sequence.
Input begins with an integer
t ≤ 10,000, the number of test cases. Each test case consists of three integers
a,b,nwhere 0 ≤
a,b < 2
64 (
a and
b will
not both be zero) and 1 ≤
n ≤ 1000.
For each test case, output a single line containing the remainder of
f (ab) upon division by
n.
Sample input
3
1 1 2
2 3 1000
18446744073709551615 18446744073709551615 1000
Sample output
1
21
250
一.大数取模,幂取模,模的计算方法
1. (a+b)%n=(a%n+b%n)%n
2.(a-b)%n=(a%n-b%n+n)%n
3.(a*b)%n=(a%n*b%n)%n
一.问题分析及解决
想啊,这个问题明明以前都做过很类似的问题的,F[i]%n,那么应该很自然的去想F[i]%n=(F[i-1]%n+F[i-2]%n)%n,接下来应该就会发现要求的东西只要知道前两个数的模就好了,那就很自然的转化到以前的找规律问题上来
#include
#include
#include
using namespace std;
typedef unsigned long long ull;
const int maxn=1000+10;
ull F[maxn*maxn];
int power(ull a, ull b, int t) {
ull result = 1;
while(b) {
if(b%2) {
result = (a*result)%t;
}
a = (a*a)%t;
b/=2;
}
return result;
}
int main()
{
freopen("/Users/zhangjiatao/Documents/暑期训练/input.txt","r",stdin);
int T;
cin>>T;
while(T--)
{
ull a,b,n,l;
int flag=1;
cin>>a>>b>>n;
F[0]=0;
F[1]=1;
for(ull i=2;i<=n*n;i++)
{
F[i]=(F[i-1]%n+F[i-2]%n)%n;
if(F[i]==F[1]&&F[i-1]==F[0])
{
l=i-1;
break;
}
}
if(a == 0 || n == 1) printf("0
");
else cout<