int extgcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int d = extgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return d;
}
模线性方程
/*
* 模线性方程 a * x = b (% n)
*/void modeq(int a, int b, int n)
{
int e, i, d, x, y;
d = extgcd(b, a % b, x, y);
if (b % d > 0)
{
cout << "No answer!
";
}
else
{
e = (x * (b / d)) % n;
for (i = 0; i < d; i++)
{
cout << i + 1 << "-th ans:" << (e + i * (n / d)) % n << '
';
}
}
return ;
}
模线性方程组(互质)
/*
* 模线性方程组
* a = B[1](% W[1]); a = B[2](% W[2]); ... a = B[k](% W[k]);
* 其中W,B已知,W[i] > 0且W[i]与W[j]互质,求a(中国剩余定理)
*/
int china(int b[], int w[], int k)
{
int i, d, x, y, m, a = 0, n = 1; for (i = 0; i < k; i++) { n *= w[i]; // 注意不能overflow } for (i = 0; i < k; i++) { m = n / w[i]; d = extgcd(w[i], m, x, y); a = (a + y * m * b[i]) % n; } if (a > 0) { return a; } else { return (a + n); }
}
模线性方程组(不要求互质)
typedeflonglong ll;
constint MAXN = 11;
int n, m;
int a[MAXN], b[MAXN];
int main(int argc, constchar * argv[])
{
int T;
cin >> T;
while (T--)
{
cin >> n >> m;
for (int i = 0; i < m; i++)
{
cin >> a[i];
}
for (int i = 0; i < m; i++)
{
cin >> b[i];
}
ll ax = a[0], bx = b[0], x, y;
int flag = 0;
for (int i = 1; i < m; i++)
{
ll d = extgcd(ax, a[i], x, y);
if ((b[i] - bx) % d != 0)
{
flag = 1; // 无整数解break;
}
ll tmp = a[i] / d;
x = x * (b[i] - bx) / d; // 约分
x = (x % tmp + tmp) % tmp;
bx = bx + ax * x;
ax = ax * tmp; // ax = ax * a[i] / d
}
if (flag == 1 || n < bx)
{
puts("0");
}
else
{
ll ans = (n - bx) / ax + 1;
if (bx == 0)
{
ans--;
}
printf("%lld
", ans);
}
}
return0;
}