Remoteland
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 262144/131072 K (Java/Others)
Total Submission(s): 908 Accepted Submission(s): 332
Problem Description
In the Republic of Remoteland, the people celebrate their independence day every year. However, as it was a long long time ago, nobody can remember when it was exactly. The only thing people can remember is that today, the number of days elapsed since their
independence (D) is a perfect square, and moreover it is the largest possible such number one can form as a product of distinct numbers less than or equal to n.
As the years in Remoteland have 1,000,000,007 days, their citizens just need D modulo 1,000,000,007. Note that they are interested in the largest D, not in the largest D modulo 1,000,000,007.
Input
Every test case is described by a single line with an integer n, (1<=n<=10,000, 000). The input ends with a line containing 0.
Output
For each test case, output the number of days ago the Republic became independent, modulo 1,000,000,007, one per line.
Sample Input
4
9348095
6297540
0
Sample Output
4
177582252
644064736
Source
SWERC 2011
题意:用不大于n内的所有数组成一个最大的完全平方数
题解:就是把N!这个数的个数为奇数的素因子除掉,于是就是一个求逆模的问题了,逆模可以用快速幂求,也可以用扩展欧几里得
这里有更加详细的题解
http://blog.csdn.net/acm_cxlove/article/details/7422265
#include
#include
#include
#define mod 1000000007
int prime[1000008],flag[10000008],all=0;
long long res[10000008],sum;
void init()
{
long long i,j,cc=sqrt(10000001.0);
memset(flag,0,sizeof(flag));
res[0]=res[1]=1;
for(i=2;i<=cc;i++)
{
if(flag[i]) continue;
for(j=i*i;j<=10000000;j+=i) flag[j]=1;
}
for(i=2;i<=10000000;i++)
{
res[i]=(res[i-1]*i)%mod;
if(!flag[i]) prime[all++]=i;
}
}
int get_sum(int x,int n)
{
int ans=0;
while(n)
{
ans+=n/x;
n=n/x;
}
return ans;
}
int fpow(long long x,long long n)
{
long long ans=1;
while(n)
{
if(n&1) ans=(ans*x)%mod;
n>>=1;
x=(x*x)%mod;
}
return ans;
}
void exgcd(int a,int b,int *gcd,int *x,int *y)
{
if(!b){ *gcd=a; *x=1; *y=0; }
else{ exgcd(b,a%b,gcd,y,x); *y-=*x*(a/b); }
}
int get_inverse_model(int tag,int MOD)
{
//return fpow(tag,MOD-2);
int gcd,x,y;
exgcd(tag,MOD,&gcd,&x,&y);
return (x+MOD)%MOD;
}
int main()
{
int i,n,cou;
init();
while(scanf("%d",&n),n)
{
for(sum=1,i=0;i