HDU6025 Coprime Sequence【前缀GCD+后缀GCD】Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1415 Accepted Submission(s): 690
Problem DescriptionDo you know what is called ``Coprime Sequence''? That is a sequence consists of
n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
InputThe first line of the input contains an integer
T(1≤T≤10), denoting the number of test cases.
In each test case, there is an integer
n(3≤n≤100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of
n integers
a1,a2,...,an(1≤ai≤109), denoting the elements in the sequence.
OutputFor each test case, print a single line containing a single integer, denoting the maximum GCD.
Sample Input3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
Sample Output1 2 2
问题链接:HDU6025 Coprime Sequence。问题简述:
去除数列中的一个数字,使去除后数列中所有数字的gcd尽可能大。
问题分析: 这是一个计算GCD的问题。程序说明: 数组prefixgcd[],对于prefixgcd[i]=g,g为a[0]-a[i]的GCD,称为前缀GCD。 数组suffixgcd[],对于suffixgcd[i]=g,g为a[i]-a[n-1]的GCD,称为后缀GCD。 有了这两个GCD值的数组,那么去掉a[i]的GCD为gcd(prefixgcd[i - 1], suffixgcd[i + 1]),从中找出最大值即可。
C++语言程序如下:
/* HDU6025 Coprime Sequence */
#include
using namespace std;
const int N = 100000;
int a[N], prefixgcd[N], suffixgcd[N];
inline int gcd(int a, int b) { //inline(修饰词,告诉编译器怎样去编译这段程序,c++特有)
return b == 0 ? a : gcd(b, a % b);
} //辗转相除法(还有递归)
int main()
{
int t, n;
cin >> t;
while(t--) {
cin >> n; //输入流输入数据
for(int i=0; i> a[i]; //把数放入数组之中
// 计算前缀GCD
prefixgcd[0] = a[0];
for(int i=1; i=0; i--)
suffixgcd[i] = gcd(a[i], suffixgcd[i + 1]); //从前面算一次gcd,再从后面算一次gcd
int ans = max(suffixgcd[1], prefixgcd[n - 2]); //去掉两头的
for(int i=1; i