数论--模除

2019-04-13 14:48发布

HDU6025 Coprime Sequence【前缀GCD+后缀GCD】

Coprime Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1415    Accepted Submission(s): 690


Problem DescriptionDo you know what is called ``Coprime Sequence''? That is a sequence consists of n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements. 
InputThe first line of the input contains an integer T(1T10), denoting the number of test cases.
In each test case, there is an integer n(3n100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of n integers a1,a2,...,an(1ai109), denoting the elements in the sequence. 
OutputFor each test case, print a single line containing a single integer, denoting the maximum GCD. 
Sample Input3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8 
Sample Output1 2 2 
问题链接HDU6025 Coprime Sequence问题简述
  去除数列中的一个数字,使去除后数列中所有数字的gcd尽可能大
问题分析  这是一个计算GCD的问题。程序说明  数组prefixgcd[],对于prefixgcd[i]=g,g为a[0]-a[i]的GCD,称为前缀GCD。  数组suffixgcd[],对于suffixgcd[i]=g,g为a[i]-a[n-1]的GCD,称为后缀GCD。  有了这两个GCD值的数组,那么去掉a[i]的GCD为gcd(prefixgcd[i - 1], suffixgcd[i + 1]),从中找出最大值即可。

C++语言程序如下:

/* HDU6025 Coprime Sequence */ #include using namespace std; const int N = 100000; int a[N], prefixgcd[N], suffixgcd[N]; inline int gcd(int a, int b) { //inline(修饰词,告诉编译器怎样去编译这段程序,c++特有) return b == 0 ? a : gcd(b, a % b); } //辗转相除法(还有递归) int main() { int t, n; cin >> t; while(t--) { cin >> n; //输入流输入数据 for(int i=0; i> a[i]; //把数放入数组之中 // 计算前缀GCD prefixgcd[0] = a[0]; for(int i=1; i=0; i--) suffixgcd[i] = gcd(a[i], suffixgcd[i + 1]); //从前面算一次gcd,再从后面算一次gcd int ans = max(suffixgcd[1], prefixgcd[n - 2]); //去掉两头的 for(int i=1; i