次幂函数取模算法

2019-04-13 16:06发布

次幂函数取模算法

高次幂函数取模算法

在平常的工作学习中,我们经常需要用到求取一个数字或者幂运算的余数,尤其在密码学中最为常用的RSA算法就经常要用到这种运算,我们称之为高次幂函数的取模运算。 在本篇文章中,将会首先介绍运用程序求解高次幂函数取模的暴力求解方法,然后针对暴力方法算法效率低下的缺点,给出一种快速的取模算法。

暴力取模算法

由于我们的高次幂函数往往拥有很高的幂,而我们在计算机中只有intfloatdoublelong long这几种变量类型,远远不能满足我们对于大数字运算的要求,从而导致数据溢出无法完成运算。
所以这里我们需要在每次迭代取模的过程中进行取模运算,从而保证数据不会溢出。代码如下: int get_mod(int a, int b, int c) { long long result = 1;//声明为long long类型防止溢出 while(b--) { result = result * a % c;//这个算法的核心就是在迭代运算过程中进行取模运算 } return static_cast<int> (result); } 这种算法的正确性毋庸置疑,但是如果幂指数太大的话,需要耗费的时间就更非常多,直接导致运算效率低下,所以只适用于指数不大的情况下使用,下面我们要讲解的蒙哥马利算法就很好地解决了这个问题,而且该算法非常简单,效率极高,完全可以手动演算。

蒙哥马利算法

蒙哥马利算法是一种快速的大数(通常达到几百个二进制)的模乘算法,由彼得·蒙哥马利在1985年提出。
下面直接放代码: int get_mod(int a, int b, int c) { long long res = 1;//声明为long long类型防止数据溢出 int temp = a; while(b > 0) { if( b & 1)//取幂指数二进制最后一位 { res = (res * temp) % c; } temp = (temp * temp) % c; b >>= 1;//幂指数二进制向右移动一位 } return static_cast<int> (res);//以int类型返回最终结果 } 使用这个算法,即便是处理很大的数据都可以快速的求得余数,非常好用,这里想说,学好数学才是真的生产力!
 Github : https://github.com/haoyuanliu
 个人博客: http://haoyuanliu.github.io/ 个人站点,欢迎访问,欢迎评论!