分数取模

2019-04-13 16:08发布

这里介绍一种分数取模的代码:假设要求  (1/m) mod p 
这里要引用小费马定理   a^p-1 mod p = 1 mod p (有兴趣的可以百度查下证明过程)  ,这里对这个公式做点改动---> a^p-1=a^p-2 *a ,  把 a  移到上述等式的右边有 a^p-2 mod p = a^-1 mod p , 那么这里,
a^-1 mod p 就是 我们要求的,这个值的结果恒等于  a^p-2 mod p ,在代码里面,我们可以通过扩展欧几里得定理来求一个数的模,但是扩展欧几里得暂时还不能求分数的模,那么这里可以将这个分数的取模换成对整数求模来得出相同的结果,现在把代码放上来:
long long fast_mod(long long a,long long b) { long long r = 1; a %= mod; while (b) { if (b & 1) r = (r*a) % mod; a = (a*a) % mod; b >>= 1; } //cout << r << endl; return r; }
同样的,如果分子不为1,那么 可以用(m*(n^-1))mod p =( (m%mod)*((n^-1) mod p) ) mod p (这是取模的运算规则,可以在百度查找一下,对取模十分有用)