Description
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent toax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
题目大意:求a关于模m的逆。
解题思路:1>扩展欧几里得算法:找出一对整数对(x,y),使得ax+by=gcd(a,b).
2>设a,b,c为任意整数.若方程ax+by=c的一组整数解为(x,y),则它的任意解为(x+k*b',y+k*a'),其中a'=a/gcd(a,b),b'=b/gcd(a,b),k任意整数.
3>模线性方程:输入正整数:a,b,n,解方程ax≡b(mod n)即:a-b是n的整数倍即:ax-b=ny.
4>ax≡1 (mod m)等价于:ax%m==1%m 也等价于:ax-my=1是否有整数解且求出满足条件的最小整数x。扩展欧几里得算法1必须是gcd(a,m)的倍数,所以a和n互素即:gcd(a,m)=1才会有解,在该条件下有唯一解。
1 #include
2 #include<string.h>
3 #include
4 #include<string>
5 using namespace std;
6 void gcd(int a,int b,int& d,int& x,int& y){
7 if(!b){
8 d=a;x=1;y=0;
9 }else{
10 gcd(b,a%b,d,y,x);
11 y-=x*(a/b);
12 }
13 }//扩展欧几里得算法,a,b,是输入量
14 //d为gcd(a,b),x,y为ax+by=gcd(a,b)的一组整数解
15 int main(){
16 int T;cin>>T;
17 while(T--){
18 int a,m,d,x,y;
19 cin>>a>>m;
20 gcd(a,m,d,x,y);
21 if(d!=1)cout<<"Not Exist
";
22 else{//根据一组解求满足条件的x
23 if(x>0){
24 while(x>0)x-=m;
25 x+=m;
26 }else if(x<0){
27 while(x<0)x+=m;
28 }else x+=m;
29 cout<'
';
30 }
31 }return 0;
32 }