数字电路设计之格雷码与二进制之间的转换

2019-04-13 21:13发布

           格雷码相邻数字间只相差一位,那么这样就可以做到比较低功耗。            FIFO中一般使用Gray code去表示地址。Gray码有反射特性和自补特性,它的循环和单步特性消除了随机数出现重大错误的可能性。
           转换关系:            二进制转格雷码:
           G[ n-1 ] = b[ n - 1 ]     (最高位的转化)            G[ i ] = b[i] & b[ i+1 ]            格雷码转二进制:            b[ n-1 ] = G[ n-1 ]            b[ i ] = G[ i ] ^ G[ i+1 ] ^ .....^G[ n -1 ]
                    = G[ i ] ^ b[ i + 1 ]

代码: Gray->Binary module Gray_to_Binary( iBin, oGray ); input wire[8:0] iBin; output reg[8:0] Gray; always@(*)begin oGray[8] <= iBin[8]; oGray[7] <= iBin[7]^iBin[8]; oGray[6] <= iBin[6]^iBin[7]; oGray[5] <= iBin[5]^iBin[6]; oGray[4] <= iBin[4]^iBin[5]; oGray[3] <= iBin[3]^iBin[4]; oGray[2] <= iBin[2]^iBin[3]; oGray[1] <= iBin[1]^iBin[2]; oGray[0] <= iBin[0]^iBin[1]; end endmoduleBinary->Gray module Gray_to_Binary( iBin, oGray ); input wire[8:0] oGray; output reg[8:0] Gray; always@(*)begin iBin[8] <= oGray[8]; iBin[7] <= oGray[7]^iBin[8]; iBin[6] <= oGray[6]^iBin[7]; iBin[5] <= oGray[5]^iBin[6]; iBin[4] <= oGray[4]^iBin[5]; iBin[3] <= oGray[3]^iBin[4]; iBin[2] <= oGray[2]^iBin[3]; iBin[1] <= oGray[1]^iBin[2]; iBin[0] <= oGray[0]^iBin[1]; end endmodule


参考资料:
http://blog.csdn.net/xiangyuqxq/article/details/7312121