讲解很明白的文章,对于加密算法爱好者来说深有启发,转载以敬之
来源:http://www.xuebuyuan.com/1399981.html
第一部分:RSA算法原理与加密解密
一、RSA加密过程简述
A和B进行加密通信时,B首先要生成一对密钥。一个是公钥,给A,B自己持有私钥。A使用B的公钥加密要加密发送的内容,然后B在通过自己的私钥解密内容。
二、RSA加密算法基础
整个RSA加密算法的安全性基于大数不能分解质因数。
三、数学原理
(一) 互质关系:两个数a和b没有除1外的其他公约数,则a与b互质
1. 任意两个质数构成互质关系
2. 两个数中,如果大数为质数,则两数必定互质
3. 1和任意整数互质
4. 当p>1时,p与p-1互质(相邻两数互质)
5. 当p=2n+1(n>0且n为整数)时,p与p+2互质(相连的两个奇数互质)
(二) 求欧拉函数:
定义:与正整数n互质且小于正整数n的正整数的个数。通常使用ψ(n)表示。
求取与正整数n互质的正整数的个数ψ(n),且ψ(n)满足ψ(n)∈(2,n)
1. 如果n=1,则ψ(n)=1
2. 如果n是质数,则ψ(n)=n-1
3. 如果n是质数p的次方,则:ψ(p^k)=p^k-p^(k-1) = p^k*(1-1/p)
4. 若p1和p2互质,n=p1*p2,则ψ(n)= ψ(p1*p2)= ψ(p1) ψ(p2)
5. 任意一个大于1的正整数都可以写成一系列质数的积
6. 根据定理5,推导欧拉定理:
因为
n = (p1^k1)* (p2^k2)*……(pr^kr) (p1~pr都是质数)
所以
ψ(n)= ψ((p1^k1)) ψ(p2^k2) ……ψ(pr^kr) 定理4
ψ(n)= (p1^k1)*(1-1/p1) * (p2^k2)(1-1/p2)……(pr^kr)*(1-1/pr) 定理3
ψ(n)= (p1^k1)* (p2^k2)*……(pr^kr) * (1-1/p1) (1-1/p2)…… (1-1/pr)
ψ(n)=n (1-1/p1) (1-1/p2)…… (1-1/pr)
(三) 欧拉定理:
正整数a与n互质,则下式恒成立
a^ψ(n) ≡1(mod n)
即:
a的ψ(n)次幂除以n,余数恒为1
(四) 模反元素
如果两个正整数a和n互质,则必定存在整数b使得a*b-1被n除余数为1
ab ≡1(mod n)
其中b被称为a的模反元素
四、RSA算法详解:假设A和B要通信
(一) 生成密钥
1. 公钥
1) 随机生成两个不相等的
质数p和q(质数越大越安全)
2) 计算n,n=p*q 则n的二进制位数就是密钥的长度。
3) 计算n的欧拉函数ψ(n)
因为
n=p*q
所以
ψ(n) =ψ(p)* ψ(q) 定理4
又p和q为质数
所以
ψ(p)=p-1 定理2
ψ(q)=q-1 定理2
所以
ψ(n) = (p-1)(q-1)
4) 获取随机正整数e,e满足 e∈(1, ψ(n))且e与ψ(n)互质(通常选择65537)
将n和e封装成公钥
2. 私钥
1) 计算e对于ψ(n)的模反元素d
e*d=1(modψ(n));
设正整数k, e*d = kψ(n)+1;
则ed-kψ(n)=1
d = (kψ(n)+1) / e;
对于不定方程ax+by=c,设gcd(a,b)=d,如果ax+by=c有解,则d|c----->也就是说如果ed-kψ(n)=1 有解,则gcd(d,-k)能够整除1,而1显然可以被任何整数整除,所以该二元一次方程必定有解(d,k)
(欧几里得定理和扩展欧几里得定理计算二元一次方程)
2) 将n和d封装成私钥
五、RSA算法可靠性论证
从上文可以统计出整个算法涉及到的量有6个,其中三个为由私钥持有者生成,三个是私钥持有者推导出来的
生成量:p,q,e
推导量:n, ψ(n),d
密钥中只有公钥被发布,所有人都可以获取。而公钥由n和e封装起来,因此,如果要破解一份RSA加密过的密文,我们必须使用私钥(私钥由n和d封装而成)
n可以从公钥获取。
(假设mc为明文,c为密文,则公钥由n和e封装则意味着求取密文的运算中,n,e和mc是已知数,只有c是未知数;私钥由n和d封装,同上,解密密文的运算中,n,d和c是已知的,只有mc是未知数。)
因此,破解私钥的关键就是破解e对于ψ(n)的模反元素d。
其数学关系是: e*d=1(modψ(n));
因此需需要先求出ψ(n),而求出ψ(n)需要知道ψ(p)和ψ(q)(因为ψ(n)= ψ(p* ψ(q))
而p和q只能通过分解n的质因数获得。所以,整个RSA算法都基于n这个大数不能分解质因数这个基础上。
因此,只要n够大,私钥就不会被破解
六、加解密过程:假设明文是m,c是密文
(一) 加密:使用公钥(n,e)
先将其换算成asc码或者unicode等其他数值。且m必须小于n
则加密算法是
m^e=c(mod n)
推出
m^e / n = k ……c这里c就是密文,k我们不关心
(二) 解密:使用私钥(n,d)
1. 简单的说解密就是通过下式求m。(一定可以求解出m)
c^d = m(mod n)
推出
c^d / n = k … … m m就是明文编码,不关心k
查表得出明文
第二部分:RSA算法签名与验签
假设A要想B发送消息,A会先计算出消息的消息摘要,然后使用自己的私钥加密这段摘要加密,最后将加密后的消息摘要和消息一起发送给B,被加密的消息摘要就是“签名”。
B收到消息后,也会使用和A相同的方法提取消息摘要,然后使用A的公钥解密A发送的来签名,并与自己计算出来的消息摘要进行比较。如果相同则说明消息是A发送给B的,同时,A也无法否认自己发送消息给B的事实。
其中,A用自己的私钥给消息摘要加密成为“签名”;B使用A的公钥解密签名文件的过程,就叫做“验签”。
数字签名的作用是保证数据完整性,机密性和发送方角 {MOD}的不可抵赖性
下面是对签名和验签过程的简要描述:
l 签名过程:
1. A计算消息m的消息摘要,记为 h(m)
2. A使用私钥(n,d)对h(m)加密,生成签名s ,s满足:
s=(h(m))^d mod n;
由于A是用自己的私钥对消息摘要加密,所以只用使用s的公钥才能解密该消息摘要,这样A就不可否认自己发送了该消息给B。
3. A发送消息和签名(m,s)给B。
l 验签过程:
1. B计算消息m的消息摘要,记为h(m);
2. B使用A的公钥(n,e)解密s,得到
H(m) = s^e mod n;
3. B比较H(m)与h(m),相同则证明
第三部分:总结
下面简单总结加密和解密的完整过程。
l 签名过程:
1. A提取消息m的消息摘要h(m),并使用自己的私钥对摘要h(m)进行加密,生成签名s
2. A将签名s和消息m一起,使用B的公钥进行加密,生成密文c,发送给B。
l 验证过程:
1. B接收到密文c,使用自己的私钥解密c得到明文m和数字签名s
2. B使用A的公钥解密数字签名s解密得到H(m).
3. B使用相同的方法提取消息m的消息摘要h(m)
4. B比较两个消息摘要。相同则验证成功;不同则验证失败。
下面是借鉴一个网友的Demo,加上我自己注释后,打包的一个Demo。
EnAndDe.java
package com.joe.main;
import java.io.*;
import java.math.BigInteger;
import java.util.ArrayList;
/**
*
* Company: 建工学院
*
*
* @author 04信息(1)程晟
* @modify Joe
* @Description Demo说明:
* 1、按照加密解密和签名验签的逻辑,编写简单的demo,不涉及java中继承的RSA相关类和Sigesture签名类
* 2、只能对数字和字母进行加密, 不涉及编码和解码问题 。 3、不做数字签名和验证了,涉及到提取信息摘要。
*/
public class EnAndDe {
private long p = 0;
private long q = 0;
private long n = 0;
private long t = 0; // 欧拉函数
private long e = 0; // 公匙
private long d = 0; // 密匙
private String mc; // 明文
private long c = 0; // 密文
private long word = 0; // 解密后明文
// 判断是一个数 x 否为素数素数就是判断在 (2,√x)范围内有没有除1外的因数,如果没有则x数素数
public boolean isPrime(long t) {
long k = 0;
k = (long) Math.sqrt((double) t);
for (int i = 2; i <= k; i++) {
if ((t % i) == 0) {
return false;
}
}
return true;
}
// 随机产生大素数(1e6数量级,注意,太大了要超出范围)
public void bigprimeRandom() {
do {
p = (long) (Math.random() * 1000000);
} while (!this.isPrime(p));
do {
q = (long) (Math.random() * 1000000);
} while (p == q || !this.isPrime(q));
}
// 输入PQ
public void inputPQ() throws Exception {
this.bigprimeRandom();
System.out.println("自动生成两个大素数p,q分别为:" + this.p + " " + this.q);
this.n = (long) p * q;
this.t = (long) (p - 1) * (q - 1);
System.out.println("这两个素数的乘积为p*q:" + this.n);
System.out.println("所得的t=(p-1)(q-1):" + this.t);
}
// 求最大公约数
public long gcd(long a, long b) {
long gcd;
if (b == 0)
gcd = a;
else
gcd = gcd(b, a % b);
return gcd;
}
// 生成公匙
public void getPublic_key() throws Exception {
do {
this.e = (long) (Math.random() * 100000);
// e满足 e∈(1, ψ(n))且e与ψ(n)最大公约数为1,即 e与t互质
} while ((this.e >= this.t) || (this.gcd(this.t, this.e) != 1));
System.out.println("生成的公钥为:" + "(" + this.n + "," + this.e + ")");
}
// 生成私钥 e*d=1(modψ(n))==> d = (kψ(n)+1) / e
public void getPrivate_key() {
long value = 1; // value 是e和d的乘积
outer: for (long k = 1;; k++) {
value = k * this.t + 1;
if ((value % this.e == 0)) {
this.d = value / this.e;
break outer;
}
}
System.out.println("产生的一个私钥为:" + "(" + this.n + "," + this.d + ")");
}
// 输入明文
public void getText() throws Exception {
System.out.println("请输入明文:");
BufferedReader stdin = new BufferedReader(new InputStreamReader(
System.in));
mc = stdin.readLine();
}
// 解密密文
public void pascolum() throws Exception {
this.getText();
System.out.println("输入明文为: " + this.mc);
// 加密
ArrayList cestr = new ArrayList();
for (int i = 0; i < mc.length(); i++) {
this.c = this.colum((long) mc.charAt(i), this.n, this.e);
cestr.add(c);
}
System.out.println("加密后所得的密文为:" + cestr);
// 解密
StringBuffer destr = new StringBuffer();
for (int j = 0; j < cestr.size(); j++) {
this.word = this.colum(Long.parseLong(cestr.get(j).toString()),
this.n, this.d);
destr.append((char) word);
}
System.out.println("解密后所得的明文为:" + destr);
}
// 加密、解密计算
public long colum(long mc, long n, long key) {
BigInteger bigy = new BigInteger(String.valueOf(mc));
BigInteger bign = new BigInteger(String.valueOf(n));
BigInteger bigkey = new BigInteger(String.valueOf(key));
return Long.parseLong(bigy.modPow(bigkey, bign).toString());// 备注1
}
public static void main(String[] args) {
try {
EnAndDe t = new EnAndDe();
t.inputPQ();
t.getPublic_key();
t.getPrivate_key();
t.pascolum();
} catch (Exception e) {
e.printStackTrace();
}
}
}