abaqus umat介电弹性体Mooney-Rivlin model + electrostati

2019-04-14 16:16发布

C Mooney-Rivlin model + electrostatic energy function (E_MRmodel.f) SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 1 RPL,DDSDDT,DRPLDE,DRPLDT, 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 3 NDI,NSHR,NTENS,NSTATEV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) C INCLUDE 'ABA_PARAM.INC' C CHARACTER*8 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATEV), 1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 4 Et(3),Stress_Max(3,3),EkEk(1),DFGRDM1_INV(3,3),En(3), 5 TEMP(1),DTEMP(1),DFGRDP(3),DFGRDM1(3, 3),DFGRDM0(3, 3), 6 CBAR(3,3),DDSDDE_Max(6,6) C DIMENSION BBAR(6),DISTGR(3,3),BBARBBAR(6) C PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0, 1 FIVE=5.D0, SIX=6.D0, SEVEN=7.D0, EIGHT=8.D0) C C ---------------------------------------------------------------- C UMAT FOR COMPRESSIBLE MOONEY-RIVLIN MODEL C W=C10(I-3)+C01(I-3)+1/D1 (J-1)*(J-1) C ---------------------------------------------------------------- C PROPS(1) - C10 C1 C PROPS(2) - C01 C2 C PROPS(3) - D1 Bulk modulus C PROPS(4) - E1 E-field in X direction C PROPS(5) - E2 E-field in Y direction C PROPS(6) - E3 E-field in Z direction C PROPS(7) – EPSILON Vaccum permittivity*relative permittivity C ---------------------------------------------------------------- C C Read Material PROPERTIES C C10=PROPS(1) C01=PROPS(2) D1 =PROPS(3) EPSILON=PROPS(7) C C JACOBIAN AND DISTORTION TENSOR C DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) IF(NSHR.EQ.3) THEN DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 2 -DFGRD1(1, 3)*DFGRD1(3, 1)*DFGRD1(2, 2) 3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) END IF SCALE=DET**(-ONE/THREE) DO K1=1, 3 DO K2=1, 3 DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) END DO END DO C C CALCULATE LEFT CAUCHY-GREEN TENSOR (B=F.Ft) C BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 1 +DISTGR(1, 3)*DISTGR(2, 3) IF(NSHR.EQ.3) THEN BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 1 +DISTGR(1, 3)*DISTGR(3, 3) BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 1 +DISTGR(2, 3)*DISTGR(3, 3) END IF C C CALCULATAE (B.Bt) C BBARBBAR(1)=BBAR(1)*BBAR(1)+BBAR(4)*BBAR(4)+BBAR(5)*BBAR(5) BBARBBAR(2)=BBAR(4)*BBAR(4)+BBAR(2)*BBAR(2)+BBAR(6)*BBAR(6) BBARBBAR(3)=BBAR(5)*BBAR(5)+BBAR(6)*BBAR(6)+BBAR(3)*BBAR(3) BBARBBAR(4)=BBAR(1)*BBAR(4)+BBAR(4)*BBAR(2)+BBAR(5)*BBAR(6) BBARBBAR(5)=BBAR(1)*BBAR(5)+BBAR(4)*BBAR(6)+BBAR(5)*BBAR(3) BBARBBAR(6)=BBAR(4)*BBAR(5)+BBAR(2)*BBAR(6)+BBAR(6)*BBAR(3) C C CALCULATE THE STRESS C TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3)) TRBBAR1=(BBAR(1)+BBAR(2)+BBAR(3))/THREE TRBBAR2=(BBAR(1)**2+BBAR(2)**2+BBAR(3)**2)/THREE TRBBARBBAR=(BBARBBAR(1)+BBARBBAR(2)+BBARBBAR(3))/THREE EG1=TWO*C10/DET EG2=TWO*C01/DET EK=TWO/D1*(TWO*DET-ONE) PR=TWO/D1*(DET-ONE) DO K1=1,NDI STRESS(K1)=EG1*(BBAR(K1)-TRBBAR1)+PR 1 +EG2*(TRBBAR*BBAR(K1)-TRBBAR2-BBARBBAR(K1) 2 +TRBBARBBAR) END DO DO K1=NDI+1,NDI+NSHR STRESS(K1)=EG1*BBAR(K1) 1 +EG2*(TRBBAR*BBAR(K1)-BBARBBAR(K1)) END DO c C CALCULATE THE STIFFNESS C EG23=EG1*TWO/THREE EG24=EG2*TWO/THREE DDSDDE(1, 1)= EG23*(BBAR(1)+TRBBAR1)+EK 1 +EG24*(-(BBAR(1)*(3*BBAR(1)+5*(BBAR(2)+BBAR(3))))/2 2 +BBAR(4)**2+BBAR(5)**2) DDSDDE(2, 2)= EG23*(BBAR(2)+TRBBAR1)+EK 1 +EG24*(-(BBAR(2)*(5*BBAR(1)+3*BBAR(2)+5*BBAR(3)))/2 2 +BBAR(4)**2+BBAR(6)**2) DDSDDE(3, 3)= EG23*(BBAR(3)+TRBBAR1)+EK 1 +EG24*(-(BBAR(3)*(5*(BBAR(1)+BBAR(2))+3*BBAR(3)))/2 2 +BBAR(5)**2+BBAR(6)**2) DDSDDE(1, 2)=-EG23*(BBAR(1)+BBAR(2)-TRBBAR1)+EK 1 +EG24*((3*(2*BBAR(1)*BBAR(2)-(4*(BBAR(1)+BBAR(2)) 2 *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(4)**2))/2) DDSDDE(1, 3)=-EG23*(BBAR(1)+BBAR(3)-TRBBAR1)+EK 1 +EG24*((3*(2*BBAR(1)*BBAR(3)-(4*(BBAR(1)+BBAR(3)) 2 *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(5)**2))/2) DDSDDE(2, 3)=-EG23*(BBAR(2)+BBAR(3)-TRBBAR1)+EK 1 +EG24*((3*(2*BBAR(2)*BBAR(3)-(4*(BBAR(2)+BBAR(3)) 2 *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(6)**2))/2) DDSDDE(1, 4)= EG23*BBAR(4)/TWO 1 +EG24*(-((3*(BBAR(1)+BBAR(2))+5*BBAR(3))*BBAR(4))/4 2 +(BBAR(5)*BBAR(6))/2) DDSDDE(2, 4)= EG23*BBAR(4)/TWO 1 +EG24*(-((3*(BBAR(1)+BBAR(2))+5*BBAR(3))*BBAR(4))/4 2 +(BBAR(5)*BBAR(6))/2) DDSDDE(3, 4)=-EG23*BBAR(4) 1 +EG24*((-2*(BBAR(1)+BBAR(2))+BBAR(3))*BBAR(4) 2 -3*BBAR(5)*BBAR(6)) DDSDDE(4, 4)= EG1*(BBAR(1)+BBAR(2)) 1 +EG24*((13*BBAR(1)**2-6*BBAR(1)*BBAR(2)+13*BBAR(2)**2 2 +3*(BBAR(1)+BBAR(2))*BBAR(3)+2*(16*BBAR(4)**2 3 +5*(BBAR(5)**2+BBAR(6)**2)))/8) IF(NSHR.EQ.3) THEN DDSDDE(1, 5)= EG23*BBAR(5)/TWO 1 +EG24*(-((3*BBAR(1)+5*BBAR(2)+3*BBAR(3))*BBAR(5))/4 2 +(BBAR(4)*BBAR(6))/2) DDSDDE(2, 5)=-EG23*BBAR(5) 1 +EG24*((-2*BBAR(1)+BBAR(2)-2*BBAR(3))*BBAR(5) 2 -3*BBAR(4)*BBAR(6)) DDSDDE(3, 5)= EG23*BBAR(5)/TWO 1 +EG24*(-((3*BBAR(1)+5*BBAR(2)+3*BBAR(3))*BBAR(5))/4 2 +(BBAR(4)*BBAR(6))/2) DDSDDE(1, 6)=-EG23*BBAR(6) 1 +EG24*(-3*BBAR(4)*BBAR(5)+(BBAR(1)-2*(BBAR(2) 2 +BBAR(3)))*BBAR(6)) DDSDDE(2, 6)= EG23*BBAR(6)/TWO 1 +EG24*((2*BBAR(4)*BBAR(5)-(5*BBAR(1)+3*(BBAR(2) 2 +BBAR(3)))*BBAR(6))/4) DDSDDE(3, 6)= EG23*BBAR(6)/TWO 1 +EG24*((2*BBAR(4)*BBAR(5)-(5*BBAR(1)+3*(BBAR(2) 2 +BBAR(3)))*BBAR(6))/4) DDSDDE(5, 5)= EG1*(BBAR(1)+BBAR(3))/TWO 1 +EG24*((13*BBAR(1)**2+3*BBAR(1)*(BBAR(2)-2*BBAR(3)) 2 +3*BBAR(2)*BBAR(3)+13*BBAR(3)**2+10*BBAR(4)**2 3 +32*BBAR(5)**2+10*BBAR(6)**2)/8) DDSDDE(6, 6)= EG1*(BBAR(2)+BBAR(3))/TWO 1 +EG24*((13*BBAR(2)**2-6*BBAR(2)*BBAR(3) 2 +13*BBAR(3)**2+3*BBAR(1)*(BBAR(2)+BBAR(3)) 3 +10*(BBAR(4)**2+BBAR(5)**2)+32*BBAR(6)**2)/8) DDSDDE(4,5)= EG1*BBAR(6)/TWO 1 +EG24*((22*BBAR(4)*BBAR(5)+(-9*BBAR(1)+13*(BBAR(2) 2 +BBAR(3)))*BBAR(6))/8) DDSDDE(4,6)= EG1*BBAR(5)/TWO 1 +EG24*((-3*(BBAR(1)+3*BBAR(2)+BBAR(3))*BBAR(5))/8 2 +(3*BBAR(4)*BBAR(6))/4) DDSDDE(5,6)= EG1*BBAR(4)/TWO 1 +EG24*(((13*(BBAR(1)+BBAR(2))-9*BBAR(3))*BBAR(4) 2 +22*BBAR(5)*BBAR(6))/8) END IF DO K1=1, NTENS DO K2=1, K1-1 DDSDDE(K1, K2)=DDSDDE(K2, K1) END DO END DO C C Calculate the inverse of deformation gradient C DFGRDM1_INV(1,1)=DFGRD1(2,2)*DFGRD1(3,3) 1 -DFGRD1(2,3)*DFGRD1(3,2) DFGRDM1_INV(1,2)=-DFGRD1(1,2)*DFGRD1(3,3) 1 +DFGRD1(1,3)*DFGRD1(3,2) DFGRDM1_INV(1,3)=DFGRD1(1,2)*DFGRD1(2,3) 1 -DFGRD1(1,3)*DFGRD1(2,2) DFGRDM1_INV(2,1)=-DFGRD1(2,1)*DFGRD1(3,3) 1 +DFGRD1(2,3)*DFGRD1(3,1) DFGRDM1_INV(2,2)=DFGRD1(1,1)*DFGRD1(3,3) 1 -DFGRD1(1,3)*DFGRD1(3,1) DFGRDM1_INV(2,3)=-DFGRD1(1,1)*DFGRD1(2,3) 1 +DFGRD1(1,3)*DFGRD1(2,1) DFGRDM1_INV(3,1)=DFGRD1(2,1)*DFGRD1(3,2) 1 -DFGRD1(2,2)*DFGRD1(3,1) DFGRDM1_INV(3,2)=-DFGRD1(1,1)*DFGRD1(3,2) 1 +DFGRD1(1,2)*DFGRD1(3,1) DFGRDM1_INV(3,3)=DFGRD1(1,1)*DFGRD1(2,2) 1 -DFGRD1(1,2)*DFGRD1(2,1) DO I=1,3 DO J=1,3 DFGRDM1_INV(I,J)=DFGRDM1_INV(I,J)/DET END DO END DO C C Calculate the current true electric field C En(1)=PROPS(14) En(2)=PROPS(15) En(3)=PROPS(16) DO I=1,3 Et(I)=0 END DO DO I=1,3 DO J=1,3 Et(J)=Et(J)+En(I)*DFGRDM1_INV(I,J) END DO END DO EkEk=0.0D0 DO I=1, 3 EkEk=EkEk+Et(I)*Et(I) ENDDO DO I=1,3 DO J=1,3 Stress_Max(I,J)=0.0D0 ENDDO ENDDO C C Update the true stress due to polarization C DO I=1,3 DO J=1,3 IF (I==J) THEN Stress_Max(I,J)=EPSILON*Et(I)*Et(J)-0.50D0*EPSILON*EkEk(1) ELSE Stress_Max(I,J)=EPSILON*Et(I)*Et(J) ENDIF ENDDO ENDDO STRESS(1)=STRESS(1)+Stress_Max(1,1) STRESS(2)=STRESS(2)+Stress_Max(2,2) STRESS(3)=STRESS(3)+Stress_Max(3,3) STRESS(4)=STRESS(4)+Stress_Max(1,2) STRESS(5)=STRESS(5)+Stress_Max(1,3) STRESS(6)=STRESS(6)+Stress_Max(2,3) RETURN END