Modular Inverse
Time Limit: 2 Seconds Memory Limit: 65536 KB
The modular modular multiplicative inverse of an integer
a modulo
m is an integer
x such that
a-1≡x (mod m)
. This is equivalent to
ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer
T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 <
a ≤ 1000 and 0 <
m ≤ 1000.
Output
For each test case, output the smallest positive
x. If such
x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
题解:求最小正整数解,其实吧,x的通解是x0+b/gcd*t,由于t是整数,那么ans=x0+b/gcd*t=x0 mod b=x0%b;因为ans要是正整数的,
所以当b/gcd是负的时候,就等于绝对值就好了,因为还有t啊,当x0%b负时,加上一个b;就妥了;因为ans=(x0+b)%b;
代码:
1 #include
2 #include
3 #include
4 #include
5 #include
6 using namespace std;
7 const int INF=0x3f3f3f3f;
8 typedef long long LL;
9 void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
10 if(!b){
11 d=a;
12 x=1;
13 y=0;
14 }
15 else{
16 e_gcd(b,a%b,d,x,y);
17 LL temp=x;
18 x=y;
19 y=temp-a/b*y;
20 }
21 }
22 LL cal(int a,int b,int c){
23 LL x,y,d;
24 e_gcd(a,b,d,x,y);
25 if(c%d!=0)return -1;//ax+by=c/(c/gcd);
26 x*=c/d;
27 b/=d;//因为x的通解是x0+(b/gcd)t;
28 if(b<0)b=-b;
29 LL ans=x%b;
30 if(ans<=0)ans+=b;
31 return ans;
32 }
33 int main(){
34 LL T,a,b,d,x,y;
35 scanf("%d",&T);
36 while(T--){
37 scanf("%lld%lld",&a,&b);
38 LL ans=cal(a,b,1);
39 if(ans==-1)puts("Not Exist");
40 else printf("%lld
",ans);
41 }
42 return 0;
43 }
题上数据比较水,数据范围1000,暴力一下就可以了:
#include
#include
#include
#include
#include
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
int main(){
int T,a,m;
scanf("%d",&T);
while(T--){//(1-ax)%m;
scanf("%d%d",&a,&m);
int flot=0;
for(int x=1;x<=1000;x++){
if((1-a*x)%m==0){
flot=1;
printf("%d
",x);
break;
}
}
if(flot)continue;
puts("Not Exist");
}
return 0;
}