【BZOJ】2956: 模积和 反演

2019-04-14 16:29发布

题目地址:https://www.lydsy.com/JudgeOnline/problem.php?id=2956 #include #include #include #include #include using namespace std; #define mod 19940417 #define niyuan 3323403 long long sum(long long l,long long r) { return (l+r)*(r-l+1)/2%mod; } long long sum2(long long n) { return n*(n+1)%mod*(2*n+1)%mod*niyuan%mod; } long long he1(long long n) { long long ans=0; for(long long l=1,r; l<=n; l=r+1) { r=n/(n/l); ans+=sum(l,r)*(n/l); ans=ans%mod; } return ans; } long long he11(long long n,long long m) { long long ans=0; for(long long l=1,r; l<=n; l=r+1) { r=m/(m/l); ans+=sum(l,r)*(m/l); ans=ans%mod; } return ans; } long long he2(long long n) { return n*n%mod; } long long he3(long long n,long long m) { long long ans=0; for(long long l=1,r; l<=n; l=r+1) { r=min(n/(n/l),m/(m/l)); ans+=(n/l)*(m/l)*((sum2(r)-sum2(l-1)+mod)%mod);/// ans=ans%mod; } return ans; } long long he4(long long n,long long m)///为什么不能化简 { long long ans=0; long long l=1,r; while (l<=n) { r=min(n/(n/l),m / (m / l)); long long x=n / l,y=m / l; ans=(ans+sum(l,r)*(n*y%mod+m*x%mod))%mod; l=r+1; } return ans; } int main() { long long n,m,ans1,ans2,x1,x2,sum,sum1; scanf("%lld%lld",&n,&m); if(n>m) swap(n,m); ans1=he1(n); ans2=he1(m); x1=(he2(n)-ans1+mod)%mod; x2=(he2(m)-ans2+mod)%mod; sum=x1*x2%mod; sum1=he2(n)*m%mod+he3(n,m); sum1=sum1%mod; sum1=sum+he4(n,m)-sum1+mod; sum1=sum1%mod; printf("%lld ",sum1); return 0; }