转载地址:https://blog.csdn.net/changliang7731/article/details/53548165关于alsa架构已经啃了好久好久,但是也卡了好久好久。难说皮毛到底有看懂多少,不管,我们先来啃wm8960 codec的驱动代码:必要相关函数说明:
////////////////////////////////////////////////////////////////////////////
1.#define SOC_ENUM_SINGLE(xreg, xshift, xmax, xtexts)
SOC_ENUM_DOUBLE(xreg, xshift, xshift, xmax, xtexts)
#define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmax, xtexts)
{ .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r,
.max = xmax, .texts = xtexts,
.mask = xmax ? roundup_pow_of_two(xmax) - 1 : 0}
ex:
#define WM8960_ALC3 0x13
static const char *wm8960_alcmode[] = {"ALC", "Limiter"};
SOC_ENUM_SINGLE(WM8960_ALC3, 8, 2, wm8960_alcmode)
这个宏定义的作用:reg 0x13的bit8是的功能是select alc mode,
设置0:alc mode 1:limite mode.
1.大概猜测:
SOC_ENUM_SINGLE(xreg, xshift, xmax, xtexts)
Defines an single enumerated control as follows:-xreg = register
xshift = control bit(s) offset in register
xmask = control bit(s) size
xtexts = pointer to array of strings that describe each setting函数的作用:
用这个define去填充某个特殊的结构体,从而实现相应的初始化设定:
struct soc_enum {
unsigned short reg;
unsigned short reg2;
unsigned char shift_l;
unsigned char shift_r;
unsigned int max;
unsigned int mask;
const char * const *texts;
const unsigned int *values;
};
根据理解,我们发现SOC_ENUM_SINGLE()这个宏用来填充soc_enum的结构体,如果将它展开:
SOC_ENUM_SINGLE(WM8960_ALC3, 8, 2, wm8960_alcmode)
--->
{
.reg = WM8960_ALC3,
.shift_l = 8,
.shift_r = 8,
.max = 2,
.texts = {"ALC", "Limiter"},
.mask = xmax ? roundup_pow_of_two(xmax) - 1 : 0//mask=?
}
////////////////////////////////////////////////////////////////////////////
2.#define SOC_ENUM(xname, xenum)
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,
.info = snd_soc_info_enum_double,
.get = snd_soc_get_enum_double, .put = snd_soc_put_enum_double,
.private_value = (unsigned long)&xenum }
ex:
static const struct soc_enum wm8960_enum0 = SOC_ENUM_SINGLE(WM8960_ALC3, 8, 2, wm8960_alcmode)
SOC_ENUM(“ALC Function”, wm8960_enum0),
同样,展开后:
--->
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC Polarity",
.info = snd_soc_info_enum_double,
.get = snd_soc_get_enum_double,
.put = snd_soc_put_enum_double,
.private_value = (unsigned long)&wm8960_enum0,
}
- 所以,我们发现,这个宏实际上还是对某个结构体的填充.用来填充snd_kcontrol_new这个结构体
这边传入的snd_soc_info_enum_double这个函数:
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
uinfo->value.enumerated.items = e->max;
if (uinfo->value.enumerated.item > e->max - 1)
uinfo->value.enumerated.item = e->max - 1;
strcpy(uinfo->value.enumerated.name,
e->texts[uinfo->value.enumerated.item]);
return 0;
}
是为了获得kcontrol->private_value的某些参数
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val;
val = snd_soc_read(codec, e->reg);
ucontrol->value.enumerated.item[0]
= (val >> e->shift_l) & e->mask;
if (e->shift_l != e->shift_r)
ucontrol->value.enumerated.item[1] =
(val >> e->shift_r) & e->mask;
return 0;
}
是为了读取对应的kcontrol的reg的某些bit的状态
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val;
unsigned int mask;
if (ucontrol->value.enumerated.item[0] > e->max - 1)
return -EINVAL;
val = ucontrol->value.enumerated.item[0] << e->shift_l;
mask = e->mask << e->shift_l;
if (e->shift_l != e->shift_r) {
if (ucontrol->value.enumerated.item[1] > e->max - 1)
return -EINVAL;
val |= ucontrol->value.enumerated.item[1] << e->shift_r;
mask |= e->mask << e->shift_r;
}
return snd_soc_update_bits_locked(codec, e->reg, mask, val);
}
同理,这边是设置对应kcontrol的reg的某些bit的状态.
struct snd_kcontrol_new {
snd_ctl_elem_iface_t iface;
unsigned int device;
unsigned int subdevice;
const unsigned char *name;
unsigned int index;
unsigned int access;
unsigned int count;
snd_kcontrol_info_t *info;
snd_kcontrol_get_t *get;
snd_kcontrol_put_t *put;
union {
snd_kcontrol_tlv_rw_t *c;
const unsigned int *p;
} tlv;
unsigned long private_value;
};
所以,这个宏同样是完成初始化动作,而且我们可以看到,
SOC_ENUM_SINGLE()
SOC_ENUM()—->需要先完成SOC_ENUM_XXX(),当然上面的例子是通过SOC_ENUM_SINGLE()来实现private data的初始化的
////////////////////////////////////////////////////////////////////////////
本质上,所有的宏基本上都是为了实现snd_kcontrol_new的结构体而服务,用来初始化snd_kcontrol_new的宏有:
SOC_ENUM(xname, xenum)
SOC_DAPM_SINGLE(xname, reg, shift, max, invert)
SOC_DOUBLE_R_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert, tlv_array)
SOC_DOUBLE_R(xname, reg_left, reg_right, xshift, xmax, xinvert)
SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array)
SOC_SINGLE(xname, reg, shift, max, invert)
SOC_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put)
//DAPM
SOC_DAPM_SINGLE(xname, reg, shift, max, invert)所以,我们可以知道,这些宏都是用来初始化snd_kcontrol_new结构体的,每个宏对应某个寄存器的特殊操作,可以实现读写控制。其中DAPM(digital audio power maniger)
也算snd_kcontrol_new的一种实例,snd_kcontrol_new结构是一种很重要的数据结构。它实现了许多寄存器的实例化的操作
////////////////////////////////////////////////////////////////////////////
#define SND_SOC_DAPM_INPUT(wname)
{ .id = snd_soc_dapm_input, .name = wname, .kcontrol_news = NULL,
.num_kcontrols = 0, .reg = SND_SOC_NOPM }
ex:
SND_SOC_DAPM_INPUT("LINPUT1")
同样展开
--->
{
.id = snd_soc_dapm_input,
.name = "LINPUT1",
.kcontrol_news = NULL,
.num_kcontrols = 0,
.reg = SND_SOC_NOPM
}
#define SND_SOC_DAPM_MIXER(wname, wreg, wshift, winvert,
wcontrols, wncontrols)
{ .id = snd_soc_dapm_mixer, .name = wname, .reg = wreg, .shift = wshift,
.invert = winvert, .kcontrol_news = wcontrols, .num_kcontrols = wncontrols}
ex:
SND_SOC_DAPM_MIXER(“Left Input Mixer”, WM8960_POWER3, 5, 0,
wm8960_lin, ARRAY_SIZE(wm8960_lin)),
展开:
--->
{
.id = snd_soc_dapm_mixer,
.name = "Left Input Mixer",
.reg = WM8960_POWER3,
.shift = 5,
.invert = 0,
.kcontrol_news = wm8960_lin,
.num_kcontrols = ARRAY_SIZE(wm8960_lin)
}
我们发现这两个宏,同样是实现了对某个结构体的初始化.
只是因宏的不同,填充的结构体的成员变量会有差异.
这个结构体是:
struct snd_soc_dapm_widget {
enum snd_soc_dapm_type id;
const char *name;
const char *sname;
struct snd_soc_codec *codec;
struct snd_soc_platform *platform;
struct list_head list;
struct snd_soc_dapm_context *dapm;
void *priv;
struct regulator *regulator;
const struct snd_soc_pcm_stream *params;
int reg;
unsigned char shift;
unsigned int value;
unsigned int mask;
unsigned int on_val;
unsigned int off_val;
unsigned char power:1;
unsigned char invert:1;
unsigned char active:1;
unsigned char connected:1;
unsigned char new:1;
unsigned char ext:1;
unsigned char force:1;
unsigned char ignore_suspend:1;
unsigned char new_power:1;
unsigned char power_checked:1;
int subseq;
int (*power_check)(struct snd_soc_dapm_widget *w);
unsigned short event_flags;
int (*event)(struct snd_soc_dapm_widget*, struct snd_kcontrol *, int);
int num_kcontrols;
const struct snd_kcontrol_new *kcontrol_news;
struct snd_kcontrol **kcontrols;
struct list_head sources;
struct list_head sinks;
struct list_head power_list;
struct list_head dirty;
int inputs;
int outputs;
struct clk *clk;
};
首先这个是DAPM相关的东西,大概可以理解为 数位声音电源管理小部件专用的结构体.
这个结构体里面有包含const struct snd_kcontrol_new *kcontrol_news;
也就是说在某些情况下,为了实现DAPM-widget,有时需要先初始化snd_kcontrol_new数据结构.通常用来实例化DAPM widget的宏有:
SND_SOC_DAPM_INPUT(wname)
SND_SOC_DAPM_SUPPLY(wname, wreg, wshift, winvert, wevent, wflags)
SND_SOC_DAPM_MIXER(wname, wreg, wshift, winvert,wcontrols, wncontrols)
SND_SOC_DAPM_ADC(wname, stname, wreg, wshift, winvert)
SND_SOC_DAPM_DAC(wname, stname, wreg, wshift, winvert)
SND_SOC_DAPM_PGA(wname, wreg, wshift, winvert,wcontrols, wncontrols)
SND_SOC_DAPM_OUTPUT(wname)
DAPM widget的实例化后,我们便可以控制某个小部件的电源模块的开关.前面有说过,因为省电的关系,需要单独增加DAPM widget的电源小部件,以方便独立对某个模块
进行电源控制.
////////////////////////////////////////////////////////////////////////////
struct snd_soc_dapm_route {
const char *sink;
const char *control;
const char *source;
int (*connected)(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink);
};
根据字面理解,这边的作用是实现一条audio路由通路。
将sink端的DAPM和source的DAPM连接起来,这样便可以进行声音的录制/播放
ex:
{ “Left Boost Mixer”, “LINPUT1 Switch”, “LINPUT1” }
意义:将 “Left Boost Mixer”(sink端)的DAPM与 “LINPUT1”(source端)的DAPM进行一次connect. “LINPUT1 Switch”用来提供control的操作函数当wm8960_probe(struct snd_soc_codec *codec)时,它做的事情:
{
snd_soc_add_codec_controls(codec, wm8960_snd_controls,
ARRAY_SIZE(wm8960_snd_controls));
wm8960_add_widgets(codec);
}
在static int wm8960_add_widgets(struct snd_soc_codec *codec)里面
{
snd_soc_dapm_new_controls(dapm, wm8960_dapm_widgets,
ARRAY_SIZE(wm8960_dapm_widgets));
snd_soc_dapm_add_routes(dapm, audio_paths, ARRAY_SIZE(audio_paths));
}
在wm8960_i2c_probe里面
会有:
ret = snd_soc_register_codec(&i2c->dev,
&soc_codec_dev_wm8960, &wm8960_dai, 1);
大致上可以这样认为:
首先出册IIC驱动,当match到对应设备时,执行iic_probe函数,同时最后再使用snd_soc_register_codec函数注册codec。
当match到对应的设备时,进行它自己的probe函数,此函数会向codec中添加一些控制小模块和DAPM的组件,同时加载DAPM路由表.
整个codec的驱动函数大致流程就是这样