预处理求出n分别为1-1000时斐波那契模数列的周期,之后求出a^b是周期中第几个即可。
复习了模算术、幂取模,顺便学习了分治法取模的迭代版本。
Run Time: 0.072s
#define UVa "LT10-1.11582.cpp" //Colossal Fibonacci Numbers!
char fileIn[30] = UVa, fileOut[30] = UVa;
#include
#include
#include
using namespace std;
//Global Variables. Reset upon Each Case!
typedef unsigned long long ULL;
const int maxn = 1000 + 5;
int m[maxn];
unsigned long long f[maxn][3100];
unsigned long long a,b;
int n;
/////
int power(ULL a, ULL b, int t) {
ULL result = 1;
while(b) {
if(b%2) {
result = (a*result)%t;
}
a = (a*a)%t;
b/=2;
}
return result;
}
int main() {
for(n = 2; n <= 1000; n ++) {
int tmp = 0;
f[n][0] = 0, f[n][1] = 1;
for(int i = 2; ; i ++) {
f[n][i] = (f[n][i-2]%n + f[n][i-1]%n) % n;
if(f[n][i] == 1 && f[n][i-1] == 0) {
m[n] = i-1;
break;
}
}
}
int T;
scanf("%d", &T);
while(T--) {
scanf("%llu%llu%d", &a, &b, &n);
if(a == 0 || n == 1) printf("0
");
else printf("%d
", f[n][power(a%m[n], b, m[n])]);
}
return 0;
}