文章目录
题目链接:
https://vjudge.net/contest/269935#problem
直接求lcm途中的答案会很大,而且不能直接取模
以前就只知道两个数的lcm怎么求,但是多个数怎么办呢?以为也是除以他们的gcd就行了,结果不对,自己推也没有推出来,网上看了大佬们的想法才知道,是要找每个质因子最高次的
比如说2 4 6,这三个数的lcm=12,gcd=2
直接2
46/gcd是不等于12的
这三个数阔以写成
21,22,2131
2这个质因子的最高次是2
3这个质因子的最高次是1
因此最后的答案应该是
2231=12这样来的
然后就是这道题了,因为一个数n的质因子肯定是小于
n的,所以枚举只用枚举到1e4,
然后就是筛质数那里,用到了啥位图,看懂了之后其实就是把每一位都用起来了,而stl里面有个bitset就是操作位的,好像原理就是位图这么个原理
我用clock()测一下时间,发现筛质数那里手写的位图要2000+ms,而bitset的要4000+ms
但oj上手写的AC时间是1736ms,bitset是1611ms ???
这是什么鬼啊?是oj有优化啥的嘛?还是我电脑太歪啦
手写位图:
#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
typedef unsigned int uint;
const int maxn=1e8+5;
uint vis[maxn/32+50];
uint prime[6000000],sum[6000000];
void Set(int i)
{
int x=i/32,y=i%32;
vis[x]|=((uint)1)<<y;
}
int Get(int i)
{
int x=i/32,y=i%32;
return vis[x]&((uint)1<<y);
}
int cnt=0;
void PHI(int n)
{
for(int i=2; i<=n; i++)
{
if(Get(i)==0)prime[cnt++]=i;
for(int j=0; j<cnt&&(LL)i*prime[j]<=n; j++)
{
Set(i*prime[j]);
if(i%prime[j]==0)break;
}
}
sum[0]=prime[0];
for(int i=1; i<cnt; i++)sum[i]=sum[i-1]*prime[i];
}
uint solve(LL n)
{
int pos=upper_bound(prime,prime+cnt,n)-prime-1;
uint ans=sum[pos];
for(int i=0; i<cnt&&(LL)prime[i]*prime[i]<=n; i++)
{
LL tp=prime[i];
while(tp*prime[i]<=n)tp*=prime[i];
ans*=tp/prime[i];
}
return ans;
}
int main()
{
PHI(maxn-5);
用bitset
#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
typedef unsigned int uint;
const int maxn=1e8+5;
bitset<maxn> bt;
uint prime[6000000],sum[6000000];
int cnt=0;
void PHI(int n)
{
bt.flip();
for(int i=2; i<=n; i++)
{
if(bt[i])prime[cnt++]=i;
for(int j=0; j<cnt&&(LL)i*prime[j]<=n; j++)
{
bt[i*prime[j]]=0;
if(i%prime[j]==0)break;
}
}
sum[0]=prime[0];
for(int i=1; i<cnt; i++)sum[i]=sum[i-1]*prime[i];
}
uint solve(LL n)
{
int pos=upper_bound(prime,prime+cnt,n)-prime-1;
uint ans=sum[pos];
for(int i=0; i<cnt&&(LL)prime[i]*prime[i]<=n; i++)
{
LL tp=prime[i];
while(tp*prime[i]<=n)tp*=prime[i];
ans*=tp/prime[i];
}
return ans;
}
int main()
{
PHI(maxn-5);