题意:类似于fibonacci数列的求法,值得注意的是题目并不是让求简单的F(n),而是求f(n)模一个数 直接矩阵快速幂就行,顺便模就行#include
#include
#include
#include
#define rep(i, j, k) for(int i = j; i <= k; i++)
using namespace std;
const int N = 2;
int MOD = 1;
struct Matrix
{
int ary[N][N];
Matrix() {
memset (ary, 0, sizeof (ary));
}
};
const Matrix operator*(const Matrix & A, const Matrix & B)
{
Matrix t;
rep (i, 0, N - 1)
rep (j, 0, N - 1)
rep (k, 0, N - 1)
t.ary[i][j] += A.ary[i][k] * B.ary[k][j], t.ary[i][j] %= MOD;
return t;
}
int quick_pow(int a, int b, int n)
{
if (n == 0) return a % MOD;
if (n == 1) return b % MOD;
Matrix ans, tmp;
tmp.ary[0][0] = 1;
ans.ary[0][0] = (a + b) % MOD;
rep (i, 0, N - 1)
tmp.ary[i][1 - i] = 1, ans.ary[i][1 - i] = b % MOD;
n -= 2;
while (n)
{
if (n & 1)
ans = ans * tmp;
n >>= 1;
tmp = tmp * tmp;
}
return ans.ary[0][0];
}
int a, b, n, m;
int main()
{
int ti;
cin >> ti;
while (ti--)
{
scanf("%d%d%d%d", &a, &b, &n, &m);
MOD = 1;
while (m--) MOD *= 10;
printf("%d
", quick_pow(a, b, n));
}
return 0;
}