1.单点更新,区间查询
int tree[N][N]; //行列分开看,每一行每一列都是一个一维树状数组
int n,m; //n行m列
int lowbit(int x){return x&(-x);}
//单点更新,区间查询
void add(int x,int y,int val){ //单点更新
while(x<=n){
for(int i=y;i<=m;i+=lowbit(i)){ //列的一维树状数组
tree[x][i]+=val;
}
x+=lowbit(x);
}
}
int sum(int x,int y){ //返回(0,0,),(x,y)为对角顶点的矩阵和
int res=0;
while(x>0){
for(int i=y;i>0;i-=lowbit(i)){
res+=tree[x][i];
}
x-=lowbit(x);
}
return res;
}
int query(int x1,int y1,int x2,int y2){ //区间查询
return sum(x2,y2)+sum(x2,y2)-sum(x2,y1-1)-sum(x1-1,y2); //容斥,注意是否可能超longlong
}
2.区间更新,单点查询
//区间修改,单点查询,和一维树状数组差分思想一样,差分思想。
//二维前缀和:
//sum[i][j]=sum[i−1][j]+sum[i][j−1]−sum[i−1][j−1]+a[i][j]
//那么我们可以令差分数组d[i][j] 表示 a[i][j] 与 a[i−1][j]+a[i][j−1]−a[i−1][j−1] 的差。
void regionUpdate(int x1,int y1,int x2,int y2,int val){
add(x1,y1,val);
add(x2+1,y1,-val);
add(x1,y2+1,-val);
add(x2+1,y2+1,val);
}
int pointQuery(int x,int y){
return sum(x,y);
3.区间更新,区间查询
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];
void add(ll x, ll y, ll z){
for(int X = x; X <= n; X += X & -X)
for(int Y = y; Y <= m; Y += Y & -Y){
t1[X][Y] += z;
t2[X][Y] += z * x;
t3[X][Y] += z * y;
t4[X][Y] += z * x * y;
}
}
void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
add(xa, ya, z);
add(xa, yb + 1, -z);
add(xb + 1, ya, -z);
add(xb + 1, yb + 1, z);
}
ll ask(ll x, ll y){
ll res = 0;
for(int i = x; i; i -= i & -i)
for(int j = y; j; j -= j & -j)
res += (x + 1) * (y + 1) * t1[i][j]
- (y + 1) * t2[i][j]
- (x + 1) * t3[i][j]
+ t4[i][j];
return res;
}
ll range_ask(ll xa, ll ya, ll xb, ll yb){
return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}
可以看这个巨巨的博客,太强了,qaq,%%%
博客链接:
https://www.cnblogs.com/RabbitHu/p/BIT.html