Description
click me
Solution
参考博客
直接求每个点充电的概率显然不太方便(其实还是很方便的,只是我太菜了。。),所以我们考虑求每个点不能充电的概率,这包括三个方面:
1. 节点的儿子没有传电(儿子没有电或者边不连通)
2. 自己没有电
3. 父亲没有传电(父亲没有电或者边不连通)
我们用
fu" role="presentation" style="position: relative;">fu表示该节点没有点且儿子没有传电的概率,那么有:
fu=(1−qu)∏v∈children(u)fv+(1−pu,v)(1−fv)" role="presentation">fu=(1−qu)∏v∈children(u)fv+(1−pu,v)(1−fv)
用
gu" role="presentation" style="position: relative;">gu表示该节点没有从父亲传电的概率,设
P" role="presentation" style="position: relative;">P为父亲没有点的概率,且
v" role="presentation" style="position: relative;">v为
u" role="presentation" style="position: relative;">u的父亲,
由于我们已经认为u" role="presentation" style="position: relative;">u没有电了,所以要除去u" role="presentation" style="position: relative;">u对于fv" role="presentation" style="position: relative;">fv的贡献,即:
P=gvfvfu+(1−pu,v)(1−fu)" role="presentation">P=gvfvfu+(1−pu,v)(1−fu)
得到:
gu=P+(1−P)(1−pu,v)" role="presentation">gu=P+(1−P)(1−pu,v)
所以答案是:
Ans=∑i=1n1−figi" role="presentation">Ans=∑i=1n1−figi
Source
#include
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define rep(i , j) for (int i = 0 , i##_end_ = j; i < i##_end_ ; ++ i)
#define For(i , j , k) for (int i = (j) , i##_end_ = (k) ; i <= i##_end_ ; ++ i)
#define Fordown(i , j , k) for (int i = (j) , i##_end_ = (k) ; i >= i##_end_ ; -- i)
#define Set(a , b) memset(a , b , sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define y1 wozenmezhemecaia
#ifdef hany01
#define debug(...) fprintf(stderr , __VA_ARGS__)
#else
#define debug(...)
#endif
inline void File() {
#ifdef hany01
freopen("bzoj3566.in" , "r" , stdin);
freopen("bzoj3566.out" , "w" , stdout);
#endif
}
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read() {
register char c_; register int _ , __;
for (_ = 0 , __ = 1 , c_ = getchar() ; !isdigit(c_) ; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; isdigit(c_) ; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const int maxn = 500005, maxm = 1000005;
int n, beg[maxn], v[maxm], nex[maxm], e;
double p[maxm], f[maxn], g[maxn], Ans, q[maxn];
inline void add(int uu, int vv, int pp) { v[++ e] = vv, p[e] = pp / 100.0, nex[e] = beg[uu], beg[uu] = e; }
inline void Init()
{
register int uu, vv, pp;
n = read();
For(i, 2, n) uu = read(), vv = read(), pp = read(), add(uu, vv, pp), add(vv, uu, pp);
For(i, 1, n) q[i] = read() / 100.0;
}
inline void dfs1(int u, int fa)
{
f[u] = 1 - q[u];
for (register int i = beg[u]; i; i = nex[i]) if (v[i] != fa)
dfs1(v[i], u), f[u] *= (f[v[i]] + (1 - p[i]) * (1 - f[v[i]]));
}
inline void dfs2(int u, int fa)
{
register double P;
for (register int i = beg[u]; i; i = nex[i]) if (v[i] != fa)
P = g[u] * f[u] / (f[v[i]] + (1 - f[v[i]]) * (1 - p[i])), g[v[i]] = P + (1 - P) * (1 - p[i]), dfs2(v[i], u);
}
int main()
{
File();
Init();
dfs1(1, 0);
g[1] = 1, dfs2(1, 0);
For(i, 1, n) Ans += 1 - f[i] * g[i];
printf("%.6lf
", Ans);
return 0;
}