判断a^m % n==1 是否成立计算出所有m的因子(1和m除外)y,若a^y % n==1,则a不可能是n的原根。因为存在性质:如果正整数gcd(a,m) = 1,正整数 d 满足a^d≡1(mod m),则 d 整除 φ(m)。
得到所有a^x % n {2<=x
#include
#include
#include
#include
using namespace std;
typedef __int64 LL;
const int MAXN = 1005;
int prim[MAXN], nprm;
bool vis[MAXN];
int n, m;
void init_prim()
{
for (int i = 2; i< MAXN; ++i)
{
if (!vis[i]) prim[nprm++] = i;
for (int j = 0; j< nprm && prim[j]&i < MAXN; ++i)
{
vis[prim[j]*i] = 1;
if (i % prim[j] == 0) break;
}
}
}
int Euler(int x)
{
int res = x;
for (int i = 0, k; i< nprm ; ++i)
{
k = prim[i];
if (k * k > x) break;
if (x % k == 0)
{
res = res/k*(k-1);
while (x%k==0) x/=k;
}
}
if (x!=1) res = res/x*(x-1);
return res;
}
int nfen, fen[100][2];
void m_divide(int x)
{
nfen = 0;
for (int i = 0, k; i< nprm ; ++i)
{
k = prim[i];
if (k * k > x) break;
if (x % k == 0)
{
fen[nfen][0] = k;
fen[nfen][1] = 0;
while (x%k==0) x/=k, ++fen[nfen][1];
++nfen;
}
}
if (x!=1) fen[nfen][0]=x, fen[nfen++][1]=1;
}
LL mpow(LL a, int b, LL mod)
{
LL res = 1LL;
while (b)
{
if (b&1) res = res*a%mod;
a = a*a%mod;
b >>= 1;
}
return res;
}
int caonima = 0;
LL ri;
void dfs(int idx, LL all)
{
if (caonima) return;
if (idx == nfen)
{
if (all == 1LL || all == m) return;
if (mpow(ri, all, n) == 1LL)
caonima = 1;
return;
}
for (int i = 0; i<=fen[idx][1]; ++i)
{
dfs(idx+1, all);
all *= fen[idx][0];
}
}
int check(LL r)
{
LL res = r;
if (mpow(r, m, n) != 1LL) return 0;
caonima = 0;
ri = res;
dfs(0, 1);
if (caonima) return 0;
return 1;
}
int gcd(int a, int b)
{
return b==0?a:gcd(b,a%b);
}
int opt[1000000], cnt;
void solve()
{
m = Euler(n);
m_divide(m);
int ff = 0;
for (int i = 2; i< n; ++i)
{
if (check(i))
{
ff = i;
break;
}
}
if (!ff)
{
printf("-1
");
return;
}
cnt = 0;
opt[cnt++] = ff;
LL res = ff;
res = res*ff%n;
for (int i = 2; i< m; ++i, res = res*ff%n)
{
if (gcd(i, m) == 1)
{
opt[cnt++] = res;
}
}
sort(opt, opt+cnt);
printf("%d", opt[0]);
for (int i = 1; i< cnt; ++i)
{
printf(" %d", opt[i]);
}
puts("");
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
init_prim();
while (scanf("%d", &n) != EOF)
{
if (n==2) puts("1");
else if (n==4) puts("3");
else
{
int p = n, cc = 0;
if (n%2==0) n>>=1;
for (int i = 0, k; i n) break;
if (n % k == 0)
{
if (++cc > 1) break;
while (n % k==0) n /= k;
}
}
if (n!=1) ++cc;
if (cc!=1) puts("-1");
else
{
n = p;
solve();
}
}
}
return 0;
}