Sumdiv
Time Limit: 1000MS
Memory Limit: 30000K
Total Submissions: 21310
Accepted: 5360
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
逆元知识
http://blog.csdn.net/acdreamers/article/details/8220787
//本题的思路非常巧妙
//题目大意是求A^B的所有约数(即因子)之和,并对其取模9901再输出
//此处用的等比数列求和公式和用到逆元的知识:a/b mod c = (a mod (b*c))/ b
//二分亦可解之
//int 2147483648~2147483647 大约是2*10^9
#include
#include
using namespace std;
#define ll long long
const int mod=9901;
ll Mod;
ll A,B;
ll fast_multi(ll x,ll y){
ll ans=0;
while(y){
if(y&1) ans=(ans+x)%Mod;
y>>=1;
x=(x+x)%Mod;
}
return ans;
}
ll fastpow(ll P,ll n){//快速幂
ll ans=1;
while(n){
if(n&1) ans=fast_multi(ans,P);//两数直接相乘溢出
n>>=1;
P=fast_multi(P,P);//两数直接相乘溢出
}
return ans;
}
int main(){
while(~scanf("%lld%lld",&A,&B)){
int n;
int ans=1;
for(int i=2;i*i<=A;i++){//如果改成i<=A,则i最后是一个很大的素数
if(A%i==0){
n=0;
while(A%i==0){
n++;
A/=i;
}
Mod=mod*(i-1);
ans=(ans*(fastpow(i,B*n+1)-1)/(i-1))%mod;//B*n+1超出了int的范围
}
}
if(A>1){
Mod=mod*(A-1);
ans=(ans*(fastpow(A,B+1)-1)/(A-1))%mod;
}
printf("%d
",ans);
}
return 0;
}