hdu1395(简单数论题)

2019-04-14 20:57发布

题目中给出输入一个整数n,要求一个最小整数的x,使得2^x mod n=1; 根据模P乘法逆元:对于整数a、p如果存在整数b,满足a*b mod p=1则称b是a的模P乘法逆元。 a存在模P的乘法逆元的充要条件是gcd(a,p)=1,令a=2^x,b=1,p=n 则若存在x使用2^x mod n=1则gcd(2^x,n)=1 (1)因为要求x的值大于0。则2^x的因子中只有一个2,所以当n为偶数时gcd(2^x,n)=2k(k=1,2,3...),即此时不存在x使得2^x mod n=1。 (2)当n为奇数时gcd(2^x,n)=1,则必存在x使得2^x mod n=1。 (3)由于任何数模1的结果为0,所以当n=1时,无论x取何值,2^x mod n=0. 综合上述(1),(2),(3),当n的值为1或偶数时,不存在x使得2^x mod n=1,其它情况则必存在一x使得2^x mod n =1。 #include int main(){ int x,n,t; while(scanf("%d",&n)!=EOF){ if(n==1 || n%2==0){ //不存在这样的x printf("2^? mod %d = 1 ",n); }else{ x=1; t=2; //暴力找到最小的x使得2^x mod n=1 while(t%n!=1){ x++; t=t*2%n; } printf("2^%d mod %d = 1 ",x,n); } } return 0; }