深度学习(7) - 长短时记忆网络(LSTM)

2019-04-14 21:10发布

长短时记忆网络是啥

我们首先了解一下长短时记忆网络产生的背景。回顾一下零基础入门深度学习(5) - 循环神经网络中推导的,误差项沿时间反向传播的公式:我们可以根据下面的不等式,来获取的模的上界(模可以看做对中每一项值的大小的度量):我们可以看到,误差项从t时刻传递到k时刻,其值的上界是的指数函数。分别是对角矩阵和矩阵W模的上界。显然,除非乘积的值位于1附近,否则,当t-k很大时(也就是误差传递很多个时刻时),整个式子的值就会变得极小(当乘积小于1)或者极大(当乘积大于1),前者就是梯度消失,后者就是梯度爆炸。虽然科学家们搞出了很多技巧(比如怎样初始化权重),让的值尽可能贴近于1,终究还是难以抵挡指数函数的威力。梯度消失到底意味着什么?在零基础入门深度学习(5) - 循环神经网络中我们已证明,权重数组W最终的梯度是各个时刻的梯度之和,即:假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值、上一时刻LSTM的输出值、以及上一时刻的单元状态;LSTM的输出有两个:当前时刻LSTM输出值、和当前时刻的单元状态。注意都是向量。LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

长短时记忆网络的前向计算

前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,是偏置项,那么门可以表示为:门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为(也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态有多少保留到当前时刻;另一个是输入门(input gate),它决定了当前时刻网络的输入有多少保存到单元状态。LSTM用输出门(output gate)来控制单元状态有多少输出到LSTM的当前输出值。我们先来看一下遗忘门:上式中,是遗忘门的权重矩阵,表示把两个向量连接成一个更长的向量,是遗忘门的偏置项,是sigmoid函数。如果输入的维度是,隐藏层的维度是,单元状态的维度是(通常),则遗忘门的权重矩阵维度是。事实上,权重矩阵都是两个矩阵拼接而成的:一个是,它对应着输入项,其维度为;一个是,它对应着输入项,其维度为可以写为:下图显示了遗忘门的计算:接下来看看输入门:上式中,是输入门的权重矩阵,是输入门的偏置项。下图表示了输入门的计算:接下来,我们计算用于描述当前输入的单元状态,它是根据上一次的输出和本次输入来计算的:下图是的计算:现在,我们计算当前时刻的单元状态。它是由上一次的单元状态按元素乘以遗忘门,再用当前输入的单元状态按元素乘以输入门,再将两个积加和产生的:符号表示按元素乘。下图是的计算:这样,我们就把LSTM关于当前的记忆和长期的记忆组合在一起,形成了新的单元状态。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。下面,我们要看看输出门,它控制了长期记忆对当前输出的影响:下图表示输出门的计算:LSTM最终的输出,是由输出门和单元状态共同确定的:下图表示LSTM最终输出的计算:式1式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。

长短时记忆网络的训练

熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。

LSTM训练算法框架

LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:
  1. 前向计算每个神经元的输出值,对于LSTM来说,即五个向量的值。计算方法已经在上一节中描述过了。
  2. 反向计算每个神经元的误差项值。与循环神经网络一样,LSTM误差项的反向传播也是包括两个方向:一个是沿时间的反向传播,即从当前t时刻开始,计算每个时刻的误差项;一个是将误差项向上一层传播。
  3. 根据相应的误差项,计算每个权重的梯度。

关于公式和符号的说明

首先,我们对推导中用到的一些公式、符号做一下必要的说明。接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵和偏置项、输入门的权重矩阵和偏置项、输出门的权重矩阵和偏置项,以及计算单元状态的权重矩阵和偏置项。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵都将被写为分开的两个矩阵:。我们解释一下按元素乘符号。当作用于两个向量时,运算如下:作用于一个向量和一个矩阵时,运算如下:作用于两个矩阵时,两个矩阵对应位置的元素相乘。按元素乘可以在某些情况下简化矩阵和向量运算。例如,当一个对角矩阵右乘一个矩阵时,相当于用对角矩阵的对角线组成的向量按元素乘那个矩阵:当一个行向量右乘一个对角矩阵时,相当于这个行向量按元素乘那个矩阵对角线组成的向量:上面这两点,在我们后续推导中会多次用到。在t时刻,LSTM的输出值为。我们定义t时刻的误差项为:注意,和前面几篇文章不同,我们这里假设误差项是损失函数对输出值的导数,而不是对加权输入的导数。因为LSTM有四个加权输入,分别对应,我们希望往上一层传递一个误差项而不是四个。但我们仍然需要定义出这四个加权输入,以及他们对应的误差项。

误差项沿时间的反向传递

沿时间反向传递误差项,就是要计算出t-1时刻的误差项我们知道,是一个Jacobian矩阵。如果隐藏层h的维度是N的话,那么它就是一个矩阵。为了求出它,我们列出的计算公式,即前面的式6式4显然,都是的函数,那么,利用全导数公式可得:下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:根据式4,我们可以求出:因为:我们很容易得出:将上述偏导数带入到式7,我们得到:根据的定义,可知:式式式式式8式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:

将误差项传递到上一层

我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:本次LSTM的输入由下面的公式计算:上式中,表示第l-1层的激活函数。因为都是的函数,又是的函数,因此,要求出E对的导数,就需要使用全导数公式:式14就是将误差传递到上一层的公式。

权重梯度的计算

对于的权重梯度,我们知道它的梯度是各个时刻梯度之和(证明过程请参考文章零基础入门深度学习(5) - 循环神经网络),我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。我们已经求得了误差项,很容易求出t时刻的、的、的、的将各个时刻的梯度加在一起,就能得到最终的梯度:对于偏置项的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:对于的权重梯度,只需要根据相应的误差项直接计算即可:以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。

长短时记忆网络的实现

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/lstm.py (python2.7)
在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。

激活函数的实现

我们先实现两个激活函数:sigmoid和tanh。
  1. class SigmoidActivator(object):
  2. def forward(self, weighted_input):
  3. return 1.0 / (1.0 + np.exp(-weighted_input))
  4. def backward(self, output):
  5. return output * (1 - output)
  6. class TanhActivator(object):
  7. def forward(self, weighted_input):
  8. return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0
  9. def backward(self, output):
  10. return