很好的文章,阐述x86上得位置无关代码的实现,翻译的不好,还望批评指正。免费PDF文档下载地址:
http://ishare.iask.sina.com.cn/f/35290470.html或者
http://wenku.baidu.com/view/506fe43a31126edb6f1a106a.html?st=1原文文章:
http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/I’ve described the need for special handling of shared libraries while loading them into the process’s address space in a
previous article. Briefly, when the linker creates a shared library, it doesn’t know in advance where it might be loaded. This creates a problem for the data and code references within the library, which should be somehow made to point to the correct memory locations.
在前篇文章中,我向大家介绍了装载时重定位技术的细节。 简单地说,共享对象在编译时不能假设自己在进程虚拟地址空间中的位置,所以当共享对象真正加载进内存后,就需要对其中的指令引用和数据访问进行重定位操作,最终使这些指令引用和数据访问指向正确的内存地址。 There are two main approaches to solve this problem in Linux ELF shared libraries:
- Load-time relocation
- Position independent code (PIC)
以Linux ELF共享库来说,主要有两个手段来解决这个问题:1.装载是重定位2.位置无关代码(PIC) Load-time relocation was
already covered. Here, I want to explain the second approach – PIC.
装载时重定位技术我们已经介绍过了。本文我向大家介绍位置无关代码 —— PIC。 I originally planned to focus on both x86 and x64 (a.k.a. x86-64) in this article, but as it grew longer and longer I decided it won’t be practical. So, it will explain only how PIC works on x86, picking this older architecture specifically because (unlike x64) it wasn’t designed with PIC in mind, so implementing PIC on it is a bit trickier. A future (hopefully much shorter) article will build upon the foundation of this one to explain how PIC is implemented on x64.
我原来打算兼顾X86架构和X64架构(又名X86-64),可是考虑到篇幅太长,所以最终决定本文只介绍PIC在X86架构上的工作机制。 至于为什么选择X86这个有些老的架构(不像x64架构),主要是因为当初设计X86架构时,并没有考虑到PIC,所以最终使得PIC在X86架构上的实现使用了很多的技巧。 以后的文章中我会向大家介绍PIC在X64架构上的工作机制。
Some problems of load-time relocation
As we’ve seen in the previous article, load-time relocation is a fairly straightforward method, and it works. PIC, however, is much more popular nowadays, and is usually the recommended method of building shared libraries. Why is this so?
前文中,我们看到装载时重定位技术是个比较简单明了的手段,那为什么现在位置无关代码(PIC)更流行? 并且一般情况下,都会推荐使用位置无关代码技术来创建共享库,这是为什么呢? Load-time relocation has a couple of problems: it takes time to perform, and it makes the text section of the library non-shareable.
装载时重定位主要存在两个问题:性能消耗 和 致使代码段无法在进程间共享。 First, the performance problem. If a shared library was linked with load-time relocation entries, it will take some time to actually perform these relocations when the application is loaded. You may think that the cost shouldn’t be too large – after all, the loader doesn’t have to scan through the whole text section – it should only look at the relocation entries. But if a complex piece of software loads multiple large shared libraries at start-up, and each shared library must first have its load-time relocations applied, these costs can build up and result in a noticeable delay in the start-up time of the application.
第一点就是程序性能问题。 如果一个共享库是使用装载时重定位技术创建的,那么当把它加载进内存的时候,就势必会花些时间用来重定位。 你可能会想,这应该不会花多少时间吧 —— 毕竟,动态链接器不用扫描程序的整个代码段,它只需参考重定位表中的重定位入口就可以了。 但是,我们可以想象一下,如果一个复杂的程序需要在启动的时候加载大量的共享库,那么每个共享库都必须事先完成重定位工作后,程序才可以开始运行,可以想象,这势必会在程序启动时造成很明显的延迟。 Second, the non-shareable text section problem, which is somewhat more serious. One of the main points of having shared libraries in the first place, is saving RAM. Some common shared libraries are used by multiple applications. If the text section (where the code is) of the shared library can only be loaded into memory once (and then mapped into the virtual memories of many processes), considerable amounts of RAM can be saved. But this is not possible with load-time relocation, since when using this technique the text section has to be modified at load-time to apply the relocations. Therefore, for each application that loaded this shared library, it will have to be wholly placed in RAM again. Different applications won’t be able to really share it.
第二点就是代码段无法共享的问题,这个问题某种程度上更严重。 我们知道,使用共享库其中一个主要的原因就是节省内存 —— 这可以通过多个进程共享相同的共享库来实现,比方说,一个共享库的代码段(即程序指令)只需加载到内存一次,之后可以映射到多个进程的虚拟内存空间中,那么这就可以节省很多内存。 可惜装载时重定位技术无法做到这点,因为共享库被加载进内存时,重定位操作会修改代码段指令。 也就是说,当一个程序运行过程中需要这个共享库时,这个程序必须重新加载共享库(不管内存中是否已经有这个共享库),因此,利用装载时重定位技术创建的共享库无法实现多进程间共享。 Moreover, having a writable text section (it must be kept writable, to allow the dynamic loader to perform the relocations) poses a security risk, making it easier to exploit the application.
更糟的是,这种情况下,代码段是可写的(为什么是可写的呢?—— 因为它必须允许动态链接器进行重定位操作,而重定位操作势必要修改代码),这就会导致很多安全隐患,使得对程序的攻击变得很容易。 As we’ll see in this article, PIC mostly mitigates these problems.
在接下来的内容,我们将看到位置无关代码(PIC)是如何解决上面两个问题的。
PIC – introduction
The idea behind PIC is simple – add an additional level of indirection to all global data and function references in the code. By cleverly utilizing some artifacts of the linking and loading processes, it’s possible to make the text section of the shared library truly
position independent, in the sense that it can be easily mapped into different memory addresses without needing to change one bit. In the next few sections I will explain in detail how this feat is achieved.
位置无关代码(PIC)的设计思路很简单 —— 就是在代码中增加一个“中间层”来使得对全局数据的访问以及函数的引用变成是间接的,而不是直接访问或引用。 只要巧妙地利用链接器和加载器的一些特性,实现共享库的代码段的真正共享性是有可能的。 一旦实现了,那么共享库就可以容易地映射到不同的虚拟内存空间中去,而不需要改变程序代码段的指令。 接下来,我会向大家详细地介绍位置无关代码(PIC)是如何实现的。
Key insight #1 – offset between text and data sections
One of the key insights on which PIC relies is the offset between the text and data sections, known to the linker
at link-time. When the linker combines several object files together, it collects their sections (for example, all text sections get unified into a single large text section). Therefore, the linker knows both about the sizes of the sections and about their relative locations.
实现位置无关代码(PIC)所依赖的理论依据其中之一是:在链接阶段,链接器就已经知道代码段和数据段之间的偏移。 当链接器将若干个目标文件链接在一起时,它会将相似段合并(例如,将所有的代码段合并成一个大的段,段的名称依然叫代码段)。 所以,链接器是知道每个段的大小以及段与段之间的相对位置的。 For example, the text section may be immediately followed by the data section, so the offset from any given instruction in the text section to the beginning of the data section is just the size of the text section minus the offset of the instruction from the beginning of the text section – and both these quantities are known to the linker.
来看一个例子,假设代码段之后紧接着就是数据段,那么代码段中的任何一条指令与数据段的开始之间的偏移就是代码段的大小减去指令到代码段开始的偏移 —— 当然,这两个值链接器都是知道的。 In the diagram above, the code section was loaded into some address (unknown at link-time) 0xXXXX0000 (the X-es literally mean "don’t care"), and the data section right after it at offset 0xXXXXF000. Then, if some instruction at offset 0×80 in the code section wants to reference stuff in the data section, the linker knows the relative offset (0xEF80 in this case) and can encode it in the instruction.
在上图中,可以看到代码段的加载地址(这个地址在链接阶段是不知道的)是0xXXXX0000(X代表任意值),而且数据段紧跟其后,加载地址为0xXXXXF000。 如果代码段内偏移0x80处的指令需要访问数据段中的数据,那么链接器就会知道指令与所需访问数据之间的相对偏移(在这里相对偏移是0xEF80),并且将这个相对偏移硬编码于指令中。 Note that it wouldn’t matter if another section was placed between the code and data sections, or if the data section preceded the code section. Since the linker knows the sizes of all sections and decides where to place them, the insight holds.
注意,就算代码段与数据段之间有其他的段,或者数据段在代码段之前都是没有关系的,因为链接器知道所有段的大小以及相对位置,所以上述理论总是成立的。
Key insight #2 – making an IP-relative offset work on x86
The above is only useful if we can actually put the relative offset to work. But data references (i.e. in the
mov instruction) on x86 require absolute addresses. So, what can we do?
上面的理论依据只有在我们需要相对偏移时才有用,可是在x86架构上的数据访问却需要数据的绝对地址(例如mov指令),那我们怎么做呢? If we have a relative address and need an absolute address, what’s missing is the value of the instruction pointer (since, by definition, the
relative address is relative to the instruction’s location). There’s no instruction to obtain the value of the instruction pointer on x86, but we can use a simple trick to get it. Here’s some assembly pseudo-code that demonstrates it:
如果已知相对地址,然后需要其绝对地址,那么我们还需要知道的就是指令指针(instruction pointer)的值(因为依据定义,相对地址是相对于指令位置的地址)。 遗憾的是X86架构没有直接获得指令指针的值的指令,不过我们可以利用一个小技巧来获得,如下面的汇编伪代码所示:call TMPLABEL
TMPLABEL:
pop ebx
What happens here is:
- The CPU executes call TMPLABEL, which causes it to save the address of the next instruction (thepop ebx) on stack and jump to the label.
- Since the instruction at the label is pop ebx, it gets executed next. It pops a value from the stack intoebx. But this value is the address of the instruction itself, soebx now effectively contains the value of the instruction pointer.
解释如下:1.CPU执行了call TMPLABEL,所以会将下一条指令(就是pop ebx)的地址压入栈顶,然后跳到TMPLABEL标签处。2.因为在标签TMPLABEL处的指令是pop ebx,所以接下来就执行它,它会从栈顶取出一个值存入寄存器ebx。 可以知道这个值就是这条指令本身的地址,所以此时ebx实际上就包含了指令指针的值。
The Global Offset Table (GOT)
With this at hand, we can finally get to the implementation of position-independent data addressing on x86. It is accomplished by means of a "
global offset table", or in short GOT.
理解了上面所说的,我们终于可以开始看看位置无关代码(PIC)是如何在X86架构上实现的了。主要是利用全局偏移表(global offset table)来实现的,全局偏移表简称GOT。 A GOT is simply a table of addresses, residing in the data section. Suppose some instruction in the code section wants to refer to a variable. Instead of referring to it directly by absolute address (which would require a relocation), it refers to an entry in the GOT. Since the GOT is in a known place in the data section, this reference is relative and known to the linker. The GOT entry, in turn, will contain the absolute address of the variable:
一个GOT就是一个简单的指针数组,位于数据段中。 假设代码段中有一些指令需要访问数据,那么它们不会使用绝对地址(因为这需要重定位操作),而是会引用GOT中的一个项。 因为GOT位于数据段中,所以链接器知道对GOT中项的引用是使用的相对地址。GOT中的项实际就是变量的绝对地址: In pseudo-assembly, we replace an absolute addressing instruction:
下面的伪代码中,我们是通过GOT而不是直接使用绝对地址访问变量:; Place the value of the variable in edx
mov edx, [ADDR_OF_VAR]
With displacement addressing from a register, along with an extra indirection:
首先利用一个寄存器(该寄存器包含的是GOT的首地址)来基址寻址定位变量的地址,然后通过间接寻址取出变量的值:; 1. Somehow get the address of the GOT into ebx
lea ebx, ADDR_OF_GOT
; 2. Suppose ADDR_OF_VAR is stored at offset 0x10
; in the GOT. Then this will place ADDR_OF_VAR
; into edx.
mov edx, DWORD PTR [ebx + 0x10]
; 3. Finally, access the variable and place its
; value into edx.
mov edx, DWORD PTR [edx]
So, we’ve gotten rid of a relocation in the code section by redirecting variable references through the GOT. But we’ve also created a relocation in the data section. Why? Because the GOT still has to contain the absolute address of the variable for the scheme described above to work. So what have we gained?
看,我们通过GOT间接的访问数据,而不再需要重定位代码段的指令了。不过别高兴的太早,我们还是要在数据段进行重定位操作的,为什么呢? 因为位置无关代码最终要成功执行的话,GOT中包含的必须是变量的绝对地址。 如果这样,那我们为什么要多此一举呢?或者说,这样做的好处在哪里? A lot, it turns out. A relocation in the data section is much less problematic than one in the code section, for two reasons (which directly address the two main problems of load-time relocation of code described in the beginning of the article):
结果证明好处是很多的。 在数据段的重定位与在代码段的重定位,相比之下前者会给我们带来更少的麻烦,主要有两点原因(这两点原因正是针对文章一开始提出的装载时重定位存在的两个问题):- Relocations in the code section are required per variable reference, while in the GOT we only need to relocate onceper variable. There are likely much more references to variables than variables, so this is more efficient.
- The data section is writable and not shared between processes anyway, so adding relocations to it does no harm. Moving relocations from the code section, however, allows to make it read-only and share it between processes.
1.如果是代码段的重定位,那么链接器会为代码中每一次的变量引用执行重定位操作,而如果使用GOT的话,只需为每一个变量执行一次重定位操作。因为程序中极有可能会对一个变量引用多次,那么只执行一次重定位操作,势必会在程序启动阶段节约大量的时间。2.因为数据段是可写的,并且在进程间是不共享的,所以在数据段执行重定位操作并没有什么伤害。再者,将重定位操作从代码段移至数据段,就可以将代码段设置成可读的,并且可以在多个进程间共享。
PIC with data references through GOT – an example
I will now show a complete example that demonstrates the mechanics of PIC:
接下来,我会通过一个具体的例子来展现PIC机制:int myglob = 42;
int ml_func(int a, int b)
{
return myglob + a + b;
}
This chunk of code will be compiled into a shared library (using the
-fpic and
-shared flags as appropriate) named
libmlpic_dataonly.so.
将这段代码编译生成(使用-fpic和-shared选项)共享库libmlpic_dataobly.so Let’s take a look at its disassembly, focusing on the
ml_func function:
让我们看看函数ml_func的反汇编代码:0000043c :
43c: 55 push ebp
43d: 89 e5 mov ebp,esp
43f: e8 16 00 00 00 call 45a <__i686.get_pc_thunk.cx>
444: 81 c1 b0 1b 00 00 add ecx,0x1bb0
44a: 8b 81 f0 ff ff ff mov eax,DWORD PTR [ecx-0x10]
450: 8b 00 mov eax,DWORD PTR [eax]
452: 03 45 08 add eax,DWORD PTR [ebp+0x8]
455: 03 45 0c add eax,DWORD PTR [ebp+0xc]
458: 5d pop ebp
459: c3 ret
0000045a <__i686.get_pc_thunk.cx>:
45a: 8b 0c 24 mov ecx,DWORD PTR [esp]
45d: c3 ret
I’m going to refer to instructions by their addresses (the left-most number in the disassembly). This address is the offset from the load address of the shared library.
最左边的一列地址是在共享库内的偏移:- At 43f, the address of the next instruction is placed intoecx, by means of the technique described in the "key insight #2" section above.
- At 444, a known constant offset from the instruction to the place where the GOT is located is added toecx. Soecx now serves as a base pointer to GOT.
- At 44a, a value is taken from [ecx - 0x10], which is a GOT entry, and placed into eax. This is the address of myglob.
- At 450 the indirection is done, and the value of myglob is placed into eax.
- Later the parameters a and b are added to myglob and the value is returned (by keeping it ineax).
l在43f处,将下条指令的地址存入寄存器ecx,依据的理论就是上面的"key insight #2"l在444处,寄存器ecx存储的值加上一个已知常量(这个常量就是本条指令与GOT之间的距离),那么现在ecx就指向GOTl在44a处,从GOT中取出一个值(地址为ecx - 0x10),存入寄存器eax,这正是变量myglob的地址。l在450处,通过一个间接访问,取出变量myglob的值存入寄存器eaxl在最后,变量myglob加上a和b,并且结果作为返回值(结果存储在寄存器eax中) We can also query the shared library with
readelf-S to see where the GOT section was placed:
我们也可以通过readelf -S(--section-headers)命令来查看GOT段在共享库中的位置:Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[19] .got PROGBITS 00001fe4 000fe4 000010 04 WA 0 0 4
[20] .got.plt PROGBITS 00001ff4 000ff4 000014 04 WA 0 0 4
Let’s do some math to check the computation done by the compiler to find
myglob. As I mentioned above, the call to
__i686.get_pc_thunk.cx places the address of the next instruction into
ecx. That address is
0x444. The next instruction then adds
0x1bb0 to it, and the result in
ecx is going to be
0x1ff4. Finally, to actually obtain the GOT entry holding the address of
myglob, displacement addressing is used –
[ecx - 0x10], so the entry is at
0x1fe4, which is the first entry in the GOT according to the section header.
我们计算一下,检查看看编译器的计算是否能正确地找到变量myglob。正如上文提到的,调用__i686.get_pc_thunk.cx会将下条指令的地址存入寄存器ecx,这个地址值为0x444。接着下条指令在这个值上加上0x1bb0,所以ecx的值变成为0x1ff4。 最后在GOT中找到变量myglob的地址 —— 这是通过基址寻址[ecx - 0x10]找到的,也就是说变量myglob的地址存储在0x1fe4处,从上面的输出可以看出这是GOT中的第一项。 Why there’s another section whose name starts with
.got will be explained later in the article . Note that the compiler chooses to point
ecx to after the GOT and then use negative offsets to obtain entries. This is fine, as long as the math works out. And so far it does.
那怎么还有另一个以.got开始为段名的段呢? 这点下文会解释。 这里只需知道编译器选择让寄存器ecx指向GOT后面的位置,然后通过一个负的位移来获得一个项,只要没有算错,程序就能正常的工作。 There’s something we’re still missing, however. How does the address of
myglob actually get into the GOT slot at
0x1fe4? Recall that I mentioned a relocation, so let’s find it:
那么,你有没有想过,变量myglob的绝对地址是如何存入GOT中的呢? 想起之前提到的重定位表,让我们把它找出来:> readelf -r libmlpic_dataonly.so
Relocation section '.rel.dyn' at offset 0x2dc contains 5 entries:
Offset Info Type Sym.Value Sym. Name
00002008 00000008 R_386_RELATIVE
00001fe4 00000406 R_386_GLOB_DAT 0000200c myglob
Note the relocation section for
myglob, pointing to address
0x1fe4, as expected. The relocation is of type
R_386_GLOB_DAT, which simply tells the dynamic loader – "put the actual value of the symbol (i.e. its address) into that offset". So everything works out nicely. All that’s left is to check how it actually looks when the library is loaded. We can do this by writing a simple "driver" executable that links to
libmlpic_dataonly.so and calls
ml_func, and then running it through GDB.
注意关于变量myglob的重定位入口,它的偏移是0x1fe4,果然与上面的计算相同。 它的重定位类型是R_386_GLOB_DAT,这个类型告诉链接器直接将符号的地址值放入偏移处。所以一切都顺利地完成。现在需要做的就是观察共享库真实加载进内存时,都发生了什么。让我们写个简单的 "driver"程序,这个程序会调用共享库libmlpic_dataonly.so中的函数ml_func,然后在GDB中调试程序:> gdb driver
[...] skipping output
(gdb) set environment LD_LIBRARY_PATH=.
(gdb) break ml_func
[...]
(gdb) run
Starting program: [...]pic_tests/driver
Breakpoint 1, ml_func (a=1, b=1) at ml_reloc_dataonly.c:5
5 return myglob + a + b;
(gdb) set disassembly-flavor intel
(gdb) disas ml_func
Dump of assembler code for function ml_func:
0x0013143c <+0>: push ebp
0x0013143d <+1>: mov ebp,esp
0x0013143f <+3>: call 0x13145a <__i686.get_pc_thunk.cx>
0x00131444 <+8>: add ecx,0x1bb0
=> 0x0013144a <+14>: mov eax,DWORD PTR [ecx-0x10]
0x00131450 <+20>: mov eax,DWORD PTR [eax]
0x00131452 <+22>: add eax,DWORD PTR [ebp+0x8]
0x00131455 <+25>: add eax,DWORD PTR [ebp+0xc]
0x00131458 <+28>: pop ebp
0x00131459 <+29>: ret
End of assembler dump.
(gdb) i registers
eax 0x1 1
ecx 0x132ff4 1257460
[...] skipping output
The debugger has entered
ml_func, and stopped at IP
0x0013144a. We see that
ecx holds the value
0x132ff4 (which is the address of the instruction plus
0x1bb0, as explained before). Note that at this point, at runtime, these are absolute addresses – the shared library has already been loaded into the address space of the process.
调试器停止在函数ml_func中,并且指向地址0x0013144a。我们可以看到,寄存器ecx的值为0x132ff4(这个值正是地址值0x00121444加上0x1bb0所得,和上文所述完全相同)。注意此时共享库已经加载进进程的虚拟地址空间中,所以这些地址都是绝对地址。 So, the GOT entry for
myglob is at
[ecx - 0x10]. Let’s check what’s there:
因此,变量myglob的地址存储在[ecx - 0x10],让我们查看那里是什么:(gdb) x 0x132fe4
0x132fe4: 0x0013300c
So, we’d expect
0x0013300c to be the address of
myglob. Let’s verify:
得到变量myglob的地址为0x0013300c,让我们验证一下:(gdb) p &myglob
$1 = (int *) 0x13300c
Indeed, it is!
果真如此!
Function calls in PIC
Alright, so this is how data addressing works in position independent code. But what about function calls? Theoretically, the exact same approach could work for function calls as well. Instead of
call actually containing the address of the function to call, let it contain the address of a known GOT entry, and fill in that entry during loading.
好了,这就是如何在位置无关代码中引用变量的方法。但是如何在其中引用函数呢? 理论上,使用引用变量的方法同样可以完成函数的引用 —— 不是直接使用函数的绝对地址,而是在加载时将绝对地址存储在GOT中。 But this is
not how function calls work in PIC. What actually happens is a bit more complicated. Before I explain how it’s done, a few words about the motivation for such a mechanism.
可是,惊奇的是,PIC中并不是这么做的,相对变量的引用,对函数的引用稍微有些复杂。在解释PIC是如何实现的之前,让我们先了解下这样做的优势在哪?
The lazy binding optimization
When a shared library refers to some function, the real address of that function is not known until load time. Resolving this address is called
binding, and it’s something the dynamic loader does when it loads the shared library into the process’s memory space. This binding process is non-trivial, since the loader has to actually
look up the function symbol in special tables.
共享库引用某个函数,在其未加载之前,函数的绝对地址是无法知道的。 一旦共享库加载入进程的虚拟地址空间中,链接器就会解析函数的绝对地址,这个解析的过程被称为绑定(binding)。 绑定的过程并不轻松,因为链接器需要在特殊的表中查找函数符号。 So, resolving each function takes time. Not a lot of time, but it adds up since the amount of functions in libraries is typically much larger than the amount of global variables. Moreover, most of these resolutions are done in vain, because in a typical run of a program only a fraction of functions actually get called (think about various functions handling error and special conditions, which typically don’t get called at all).
所以,函数绑定是需要时间的。 因为在动态链接下,程序模块之间包含了大量的函数引用(比对全局变量的引用多得多,全局变量往往比较少,因为大量的全局变量会导致模块之间耦合度变大),如果程序运行前把所有的函数都绑定好的话,这势必会导致浪费时间。并且,很多的绑定都是没有用的,为什么呢?因为一般程序运行时只须调用少量的函数(譬如那些错误处理函数或者用户很少用到的功能模块就很少用到,或者根本用不到),所以没必要一下子绑定所有的函数。 So, to speed up this process, a clever lazy binding scheme was devised. "Lazy" is a generic name for a family of optimizations in computer programming, where work is delayed until the last moment when it’s actually needed, with the intention of avoiding doing this work if its results are never required during a specific run of a program. Good examples of laziness are
copy-on-write and
lazy evaluation.
所以,为了提高程序运行的速度,ELF采用了一种叫做延迟绑定的做法。“延迟”在程序优化领域是个通用名,意思就是说,只有真正用到的时候才开始运作,避免无用功。使用这种机制的很好例子有写时拷贝(copy-on-write)以及延迟计算(lazy evaluation)。 This lazy binding scheme is attained by adding yet another level of indirection – the PLT.
延迟绑定是通过PLT这个“中间层”来实现的。
The Procedure Linkage Table (PLT)
The PLT is part of the executable text section, consisting of a set of entries (one for each external function the shared library calls). Each PLT entry is a short chunk of executable code. Instead of calling the function directly, the code calls an entry in the PLT, which then takes care to call the actual function. This arrangement is sometimes called a "
trampoline". Each PLT entry also has a corresponding entry in the GOT which contains the actual offset to the function, but only when the dynamic loader resolves it. I know this is confusing, but hopefully it will be come clearer once I explain the details in the next few paragraphs and diagrams.
PLT是代码段的一部分,其中包含若干个项(每一个项对应共享库中的一个函数引用),每个项都是一小段可执行代码。 那么当调用函数时,就不再直接调用函数了,而是引用PLT中的一个项,从而实现函数的间接调用,这种方法有时也被称为“弹簧垫”(trampoline)。每一个PLT项在GOT中都有一个相应的项,当链接器完成解析之后,这个项就是函数的真实绝对地址。 我知道说的有些乱,不过我相信看过下面的图之后你会懂得这些的。 As the previous section mentioned, PLTs allow lazy resolution of functions. When the shared library is first loaded, the function calls have not been resolved yet:
我们知道,PLT是用来实现延迟绑定的,所以当共享库第一次被加载时,其对函数的引用还没有绑定: Explanation:
- In the code, a function func is called. The compiler translates it to a call tofunc@plt, which is some N-th entry in the PLT.
- The PLT consists of a special first entry, followed by a bunch of identically structured entries, one for each function needing resolution.
- Each PLT entry but the first consists of these parts:
- A jump to a location which is specified in a corresponding GOT entry
- Preparation of arguments for a "resolver" routine
- Call to the resolver routine, which resides in the first entry of the PLT
- The first PLT entry is a call to a resolver routine, which is located in the dynamic loader itself. This routine resolves the actual address of the function. More on its action a bit later.
- Before the function’s actual address has been resolved, the Nth GOT entry just points to after the jump. This is why this arrow in the diagram is colored differently – it’s not an actual jump, just a pointer
对上图解释如下:l 在代码中,调用了函数func,编译器将其翻译成对func@plt的调用,这是PLT中的某一项。l PLT的第一项很特殊,在其后是一些相同的项,每个项对应一个函数引用。l 除了PLT的第一项,其它项包括下面三部分:a. 根据GOT中对应的项,执行一个跳转b. 为“解析”程序准备参数c. 跳转到PLT的第一项,并且调用解析程序l 在PLT的第一项中,会调用解析函数,这个解析函数是动态链接器的一部分。这个解析函数会解析处函数的真实地址,至于是如何解析的,稍后会解释。l 在函数真实地址被解析出来之前,GOT相对应项中包含的项其实是指向jump之后的那条指令。这就解释了为什么我会将图片中的那个箭头标为不同的颜 {MOD}了 —— 它其实不是真正的跳转,只是一个pointer。 What happens when
func is called for the first time is this:
- PLT[n] is called and jumps to the