#input_data
import os
import numpy as np
import tensorflow as tf
def get_files(filename):
class_train = []
label_train = []
for train_class in os.listdir(filename):
for pic in os.listdir(filename+train_class):
class_train.append(filename+train_class+'/'+pic)
label_train.append(train_class)
temp = np.array([class_train,label_train])
temp = temp.transpose()
#shuffle the samples
np.random.shuffle(temp)
#after transpose, images is in dimension 0 and label in dimension 1
image_list = list(temp[:,0])
label_list = list(temp[:,1])
label_list = [int(i) for i in label_list]
#print(label_list)
return image_list,label_list
def get_batches(image, label, resize_w, resize_h, batch_size, capacity):
# convert the list of images and labels to tensor
image = tf.cast(image, tf.string)
label = tf.cast(label, tf.int64)
queue = tf.train.slice_input_producer([image, label])
label = queue[1]
image_c = tf.read_file(queue[0])
image = tf.image.decode_jpeg(image_c, channels=3)
# resize
image = tf.image.resize_image_with_crop_or_pad(image, resize_w, resize_h)
# (x - mean) / adjusted_stddev
image = tf.image.per_image_standardization(image)
image_batch, label_batch = tf.train.batch([image, label],
batch_size=batch_size,
num_threads=64,
capacity=capacity)
images_batch = tf.cast(image_batch, tf.float32)
labels_batch = tf.reshape(label_batch, [batch_size])
return images_batch, labels_batch
#model
import os
import numpy as np
import tensorflow as tf
def mmodel(images,batch_size):
with tf.variable_scope('conv1') as scope:
weights = tf.get_variable('weights',
shape = [3,3,3, 16],
dtype = tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name= scope.name)
with tf.variable_scope('pooling1_lrn') as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1],strides=[1,2,2,1],
padding='SAME', name='pooling1')
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75,name='norm1')
with tf.variable_scope('conv2') as scope:
weights = tf.get_variable('weights',
shape=[3,3,16,128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name='conv2')
with tf.variable_scope('pooling2_lrn') as scope:
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75,name='norm2')
pool2 = tf.nn.max_pool(norm2, ksize=[1,2,2,1], strides=[1,1,1,1],
padding='SAME',name='pooling2')
with tf.variable_scope('local3') as scope:
reshape = tf.reshape(pool2, shape=[batch_size, -1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable('weights',
shape=[dim,4096],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[4096],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
with tf.variable_scope('softmax_linear') as scope:
weights = tf.get_variable('softmax_linear',
shape=[4096, 2],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[2],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
softmax_linear = tf.add(tf.matmul(local3, weights), biases, name='softmax_linear')
return softmax_linear
def loss(logits,label_batches):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=label_batches)
cost = tf.reduce_mean(cross_entropy)
return cost
def get_accuracy(logits,labels):
acc = tf.nn.in_top_k(logits,labels,1)
acc = tf.cast(acc,tf.float32)
acc = tf.reduce_mean(acc)
return acc
def training(loss,lr):
train_op = tf.train.AdamOptimizer(lr).minimize(loss)
return train_op
#train
import os
import tensorflow as tf
import numpy as np
import input_data
import model
def run_training():
data_dir = 'E:\data\dataset\man_woman_flower\'
log_dir = 'E:\tensorflow\CNN_classifier_1\logs\man_woman\'
image, label = input_data.get_files(data_dir)
image_batches, label_batches = input_data.get_batches(image, label, 32, 32, 32, 20)
print(image_batches.shape)
p = model.mmodel(image_batches, 32)
cost = model.loss(p, label_batches)
train_op = model.training(cost, 0.001)
acc = model.get_accuracy(p, label_batches)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
max_acc = 0
for epoch in range(4000):
for i in range(300):
if coord.should_stop():
break
tra_acc = 0
_, train_acc, train_loss = sess.run([train_op, acc, cost])
print("Iter:%d,loss:%.3f,accuracy:%.2f%%" %(epoch,train_loss, train_acc))
tra_acc += train_acc
if max_acc < tra_acc:
max_acc = tra_acc
check = os.path.join(log_dir, "model.ckpt")
saver.save(sess, check)
except tf.errors.OutOfRangeError:
print("Done!!!")
finally:
coord.request_stop()
coord.join(threads)
sess.close()
run_training()
# evaluation
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import tensorflow as tf
import model
def get_one_image(img_dir):
image = Image.open(img_dir)
plt.imshow(image)
image = image.resize([32, 32])
image_arr = np.array(image)
return image_arr
def test(test_file):
log_dir = 'E:\tensorflow\CNN_classifier_1\logs\man_woman\'
image_arr = get_one_image(test_file)
with tf.Graph().as_default():
image = tf.cast(image_arr, tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.reshape(image, [1, 32, 32, 3])
print(image.shape)
p = model.mmodel(image, 1)
logits = tf.nn.softmax(p)
x = tf.placeholder(tf.float32, shape=[32, 32, 3])
saver = tf.train.Saver()
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path:
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
saver.restore(sess, ckpt.model_checkpoint_path)
print('Loading success')
else:
print('No checkpoint')
prediction = sess.run(logits, feed_dict={x: image_arr})
max_index = np.argmax(prediction)
print(max_index)
test("111.jpg")