Codeforces721 A. One-dimensional Japanese Crosswor

2019-04-15 17:43发布

题目连接:http://codeforces.com/contest/721/problem/A
A. One-dimensional Japanese Crossword time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized a × b squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia https://en.wikipedia.org/wiki/Japanese_crossword). Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of n squares (e.g. japanese crossword sized 1 × n), which he wants to encrypt in the same way as in japanese crossword.
The example of encrypting of a single row of japanese crossword.
Help Adaltik find the numbers encrypting the row he drew. Input The first line of the input contains a single integer n (1 ≤ n ≤ 100) — the length of the row. The second line of the input contains a single string consisting of n characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew). Output The first line should contain a single integer k — the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain k integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right. Examples input 3 BBW output 1 2 input 5 BWBWB output 3 1 1 1 input 4 WWWW output 0 input 4 BBBB output 1 4 input 13 WBBBBWWBWBBBW output 3 4 1 3 Note The last sample case correspond to the picture in the statement.


题目大意:找多少段连续的‘B’。
解题思路:直接模拟。
/* *********************************************** ┆ ┏┓   ┏┓ ┆ ┆┏┛┻━━━┛┻┓ ┆ ┆┃       ┃ ┆ ┆┃   ━   ┃ ┆ ┆┃ ┳┛ ┗┳ ┃ ┆ ┆┃       ┃ ┆ ┆┃   ┻   ┃ ┆ ┆┗━┓ 马 ┏━┛ ┆ ┆  ┃ 勒 ┃  ┆       ┆  ┃ 戈 ┗━━━┓ ┆ ┆  ┃ 壁     ┣┓┆ ┆  ┃ 的草泥马  ┏┛┆ ┆  ┗┓┓┏━┳┓┏┛ ┆ ┆   ┃┫┫ ┃┫┫ ┆ ┆   ┗┻┛ ┗┻┛ ┆ ************************************************ */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define rep(i,a,b) for (int i=(a),_ed=(b);i<=_ed;i++) #define per(i,a,b) for (int i=(b),_ed=(a);i>=_ed;i--) #define pb push_back #define mp make_pair const int inf_int = 2e9; const long long inf_ll = 2e18; #define inf_add 0x3f3f3f3f #define mod 1000000007 #define LL long long #define ULL unsigned long long #define MS0(X) memset((X), 0, sizeof((X))) #define SelfType int SelfType Gcd(SelfType p,SelfType q){return q==0?p:Gcd(q,p%q);} SelfType Pow(SelfType p,SelfType q){SelfType ans=1;while(q){if(q&1)ans=ans*p;p=p*p;q>>=1;}return ans;} #define Sd(X) int (X); scanf("%d", &X) #define Sdd(X, Y) int X, Y; scanf("%d%d", &X, &Y) #define Sddd(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z) #define reunique(v) v.resize(std::unique(v.begin(), v.end()) - v.begin()) #define all(a) a.begin(), a.end() #define mem(x,v) memset(x,v,sizeof(x)) typedef pair pii; typedef pair pll; typedef vector vi; typedef vector vll; inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,rx=getchar();return ra*fh;} //#pragma comment(linker, "/STACK:102400000,102400000") int ans[100]; int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); string s; int n; n = read(); cin>>s; int cnt = 0; for(int i=0;i