在
单片机入门学习三 51单片机学习二 中已经说了串口通讯的基本原理,本篇主要记录stm32中的串口通讯。
1、串口通讯基础简单回顾
1)串口通讯通讯方式
- 同步通信:带时钟同步信号传输。SPI,I²C通信接口
- 异步通信:不带时钟同步信号。UART(通用异步收发器),单总线
2)串行通讯接口
通讯标准 |
引脚说明 |
通信方式 |
通信方向 |
UART
(通用一步收发器)
TXD:发送端
RXD接收端
GND公共地
异步通讯
全双工
单总线
(1-wire)
DQ:发送/接收端
异步通讯
半双工
SPI
SCK:同步时钟
MISO:主机输入,从机输出
MOSI:主机输出,从机输入
同步通讯
全双工
I²C
SCL:同步时钟
SDA:数据输入/输出端
同步通讯
半双工
stm32的串口通信接口(stm32f10x系列芯片,包含3个USART、2个UART)
- UART:通用异步收发器
- USART:通用同步异步收发器
3)UART引脚连接方法
① 单片机连接单片机
② 单片机连接PC
PC机使用的是RS232电平标准,而单片机采用的是 TTL电平,所以需要 连接一个RS232转换器 将TTL电平转换成 PC可以识别的RS232电平
4)UART异步通信特点
- 全双工异步通信。
- 分数波特率发生器系统,提供精确的波特率。发送和接受共用的可编程波特率,最高可达4.5Mbits/s
- 可编程的数据字长度(8位或者9位);
- 可配置的停止位(支持1或者2位停止位);
- 可配置的使用DMA多缓冲器通信。
- 单独的发送器和接收器使能位。
- 检测标志:① 接受缓冲器 ②发送缓冲器空 ③传输结束标志
- 多个带标志的中断源。触发中断。
5)串口通信过程
① 数据接收过程
外部设备将数据发送到 串行输入移位寄存器,串行输入移位寄存器在将数据传送到输入数据缓冲器,MCU在从输入数据缓冲器中读出数据
② 数据发送过程
MCU将要发送的数据写入输出数据缓冲器,输出数据缓冲器在将数据写入串行输出移位寄存器,串行移位寄存器在将数据输出到外部设备
6)USART概述
通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。
它支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。
使用多缓冲器配置的DMA方式,可以实现高速数据通信。
任何USART双向通信至少需要两个脚:接收数据输入(RX)和发送数据输出(TX)。
RX:接收数据串行输。通过过采样技术来区别数据和噪音,从而恢复数据。
TX:发送数据输出。当发送器被禁止时,输出引脚恢复到它的I/O端口配置。当发送器被激活,并且不发送数据时,TX引脚处于高电平。在单线和智能卡模式里,此I/O口被同时用于数据的发送和接收。
● 总线在发送或接收前应处于空闲状态
● 一个起始位
● 一个数据字(8或9位),最低有效位在前
● 0.5,1.5,2个的停止位,由此表明数据帧的结束
● 使用分数波特率发生器 —— 12位整数和4位小数的表示方法。
● 一个状态寄存器(USART_SR)
● 数据寄存器(USART_DR)
● 一个波特率寄存器(USART_BRR),12位的整数和4位小数
● 一个智能卡模式下的保护时间寄存器(USART_GTPR)
下图是USART通讯的示意图
下图是STM32串口异步通信需要定义的参数
STM32异步通信参数:
①起始位
②数据位(8位或者9位)
③奇偶校验位(第9位)
④停止位(1,15,2位)
⑤波特率设置
上图中红 {MOD}的线表示 芯片读取 PC端发送的信息,绿 {MOD}的线表示 发送数据到PC,枚红 {MOD}的线表示 时钟线。
7)USART常用数据寄存器
USART_SR状态寄存器
USART_DR数据寄存器
USART_BRR波特率寄存器
波特率计算方法:
8)串口操作相关库函数
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);//串口初始化:波特率,数据字长,奇偶校验,硬件流控以及收发使能
void USART_Cmd();//使能串口
void USART_ITConfig();//使能相关中断
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);//发送数据到串口,DR
uint16_t uint16_t USART_ReceiveData(USART_TypeDef* USARTx);//接受数据,从DR读取接受到的数据
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);//获取状态标志位 读取的是USART_SR寄存器
void USART_ClearFlag();//清除状态标志位
ITStatus USART_GetITStatus();//获取中断状态标志位
void USART_ClearITPendingBit();//清除中断状态标志位
9)串口配置一般步骤
①串口时钟使能,GPIO时钟使能:RCC_APB2PeriphClockCmd();
②串口复位:USART_DeInit(); 这一步不是必须的
③GPIO端口模式设置:GPIO_Init(); 模式设置为GPIO_Mode_AF_PP(RX),GPIO_Mode_AF_Float(TX)
④串口参数初始化:USART_Init();
⑤开启中断并且初始化NVIC(如果需要开启中断才需要这个步骤)
NVIC_Init();
USART_ITConfig();
⑥使能串口:USART_Cmd();
⑦编写中断处理函数:USARTx_IRQHandler();
⑧串口数据收发:
void USART_SendData();//发送数据到串口,DR
uint16_t USART_ReceiveData();//接受数据,从DR读取接受到的数据
⑨串口传输状态获取:
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);
2、串口编程
下面是所学的串口实现课程的源码
usart.c
u8 USART_RX_BUF[USART_REC_LEN];
u16 USART_RX_STA=0;
void uart_init(u32 bound)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_InitStructure.USART_BaudRate = bound;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
USART_Cmd(USART1, ENABLE);
}
void USART1_IRQHandler(void)
{
u8 Res;
#if SYSTEM_SUPPORT_OS
OSIntEnter();
#endif
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
Res =USART_ReceiveData(USART1);
if((USART_RX_STA&0x8000)==0)
{
if(USART_RX_STA&0x4000)
{
if(Res!=0x0a)USART_RX_STA=0;
else USART_RX_STA|=0x8000;
}
else
{
if(Res==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;
}
}
}
}
}
main.c
int main(void)
{
u16 t;
u16 len;
u16 times=0;
delay_init();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
uart_init(115200);
while(1)
{
if(USART_RX_STA&0x8000)
{
len=USART_RX_STA&0x3fff;
printf("
您发送的消息为:
");
for(t=0;t