专家
公告
财富商城
电子网
旗下网站
首页
问题库
专栏
标签库
话题
专家
NEW
门户
发布
提问题
发文章
TensorFlow成员说:深度学习的未来,在单片机的身上
2019-04-15 19:19
发布
生成海报
站内文章
/
PIC单片机
17457
0
1612
果然,TensorFlow Mobile的老大,满脑子还是便携设备的事。
Pete Warden,是谷歌TensorFlow团队成员,也是TensorFLow Mobile的负责人,常年遨游在深度学习的大海。
另外,这些看上去很熟悉的书,也是他的作品。
除此之外,皮特有个新的想法要和大家分享——
他坚定地相信,未来的
深度学习
能够在
微型
的、
低功耗
的芯片上自由地奔跑。
换句话说,
单片机
(MCU) ,有一天会成为深度学习最肥沃的土壤。
这里面的逻辑走得有些绕,但好像还是有点道理的。
为什么是单片机
单片机遍地都是
根据皮特的估计,今年一年全球会有大约
400亿
枚单片机 (MCU) 售出。
MCU里面有个小CPU,RAM只有
几kb
的那种,但医疗设备、汽车设备、工业设备,还有消费级电子产品里,都用得到。
这样的计算机,需要的电量很小,价格也很便宜,大概不到50美分。
之所以得不到重视,是因为一般情况下,MCU都是用来取代 (如洗衣机里、遥控器里的) 那些老式的机电系统——控制机器用的逻辑没有发生什么变化。
能耗才是限制因素
任何需要
主电源 (Mains Electricity)
的设备,都有很大的局限性。毕竟,不管到哪都要找地方插电,就算是手机和PC都得经常充电才行。
然而,对智能产品来说,在任何地方都能用、又不用经常维护,才是王道。
所以,先来看下
智能手机
的各个部位用电有多快——
· 显示器400毫瓦
· 无线电800毫瓦
· 蓝牙100毫瓦
· 加速度计21毫瓦
· 陀螺仪130毫瓦
· GPS 176毫瓦
相比之下,MCU只需要1毫瓦,或者比这更少。可是,一枚纽扣电池拥有2,000焦耳的电量,所以即便是1毫瓦的设备,也只能维持1个月。
当然,现在的设备大多用
占空比
(Duty Cycling) ,来避免每个部件
一直
处在工作状态。不过,即便是这样,电量分配还是很紧张。
CPU和传感器不太耗电
CPU和传感器的功耗,基本可以降到微瓦级,比如高通的Glance视觉芯片。
相比之下,显示器和无线电,就尤其耗电了。即便是WiFi和蓝牙也至少要几十毫瓦。
因为,数据传输需要的能量,似乎与传输距离
成正比
。CPU和传感器只传
几毫米
,而无线电的传送距离以米为单位,就要贵得多。
传感器的数据都去哪了
传感器能获取的数据,比人们能用到的数据,多得多。
皮特曾经和从事微型卫星拍摄的攻城狮聊过。
他们基本上用手机相机来拍高清视频。但问题是,卫星的数据存储量很小,传输带宽也很有限,从地球上每小时只能下载到一点点数据。
就算不涉及到地外事务,地球上的很多传感器也会遇到这样的尴尬。
一个很有趣的栗子,来自皮特的一个好基友,每到12月,他家上网流量就会用到爆炸。后来,他发现是那些给圣诞节挂的彩灯,影响了视频下载的压缩比例,多下载了很多帧。
跟深度学习有什么关系
如果上面这些听上去有点道理,那么就有一大片市场等待技术来挖掘。
我们需要的是,能够在单片机上运转的,不需要很多电量的,依赖
计算
不依赖
无线电
,并且可以把那些本来要浪费掉的传感器数据利用起来的。
这也是机器学习,特别是深度学习,需要跨越的鸿沟。
天作之合
深度学习就是上面所说的,
计算密集型
,可以在现有的MCU上运行得很舒服。
这很重要,因为很多其他的应用,都受到了“能在
多短
的时间里获得大量的
储存空间
”这样的限制。
相比之下,神经网络大部分的时间,都是用来把那些很大很大的
矩阵
乘到一起,翻来覆去用相同的数字,只是组合方式不同了。
这样的运算,当然比从DRAM里读取大量的数值,要低碳得多。
需要的数据没那么多的话,就可以用SRAM这样低功耗的设备来存储。
如此说来,深度学习最适合MCU了,尤其是在8位元计算可以代替浮点运算的时候。
深度学习很低碳
皮特花了很多时间,来考虑
每次运算
需要多少
皮焦耳
。
比如,MobileNetV2的图像分类网络,的最简单的结构,大约要用2,200万次运算。
如果,每次运算要5皮焦,每秒钟一帧的话,这个网络的功率就是110微瓦,用纽扣电池也能坚持近一年。
对传感器也友好
最近几年,人们用神经网络来处理噪音信号,比如图像、音频、加速度计的数据等等。
如果可以在MCU上运行神经网络,那么更大量的传感器数据就可以得到处理,而不是浪费。
那时,不管是语音交互,还是图像识别功能,都会变得更加轻便。
虽然,这还只是个理想。
∞
∞∞∞
∞
IT派 - {技术青年圈}
持续关注互联网、区块链、人工智能领域
公众号回复
“机器学习”
,
邀你加入
{ IT派AI机器学习群 }
Ta的文章
更多
>>
PCB布线规范(华为)
0 个评论
去耦电容的选择、容值计算和pcb布局布线详解
0 个评论
TensorFlow成员说:深度学习的未来,在单片机的身上
0 个评论
PIC RS232通信
0 个评论
TM1640与PIC12F629的结合
0 个评论
热门文章
×
关闭
举报内容
检举类型
检举内容
检举用户
检举原因
广告推广
恶意灌水
回答内容与提问无关
抄袭答案
其他
检举说明(必填)
提交
关闭
×
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮