NXP

异构多核处理器开发嵌入式应用入门

2019-07-12 11:36发布

By Toradex Raul Rosetto Mu?oz 1). 简介 每天都有新的异构多核处理器/片上系统 SoC 面市。在 SoC 上集成微控制器和外设控制核正变得越来越普遍,看看最新发布的 NXP? :i.MX 6SoloX、i.MX7 和即将面世的 i.MX 8。在我看来,这有点像曾经 ADC(模数转换器)开始集成微处理器上的外设功能,在应用处理器上集成微控制器,可以解决 Linux 系统中一些实时可控相关的问题。   新技术的出现总是会引出许多问题,或许你会产生疑问,这是否需要很多工作量。本位旨在快速、明了地介绍一种使用异构多核方式开发应用的方法。这里我们将会涉及搭建开发环境以及创建一个双核通信的 ping pong 应用的基本步骤,最后演示一个用微控制器通过 SPI 读取 ADC 数据并把数据发送至运行 Linux 的处理器的实际应用。   这是揭示利用异构多核处理构架 SoC 开发嵌入式系统的系列文章。通过实际操作和一些案例演示,你可以快速地开始开发。   2). 硬件 本文中将使用 Toradex 双核 Colibri iMX7 计算机模块:该模块采用 NXP i.MX7 SoC,一个双核 ARM Cortex-A7 和 一个 ARM Cortex-M4 核心,A7 主频为 1GHz,M4 主频为 200MHz,同时具备 512MB 存储和 512MB 内存。模块如下图所示:   载板采用 Aster。这是 Toradex 新发布的产品,使新项目开发更加容易。该载板具有标准的 Arduino 接口,使开发人员能够利用市面上丰富的 Arduino 模块,缩减研发时间。除了 Arduino,还有一个兼容 Raspberry Pi 的接口,允许在开发的硬件上使用模块,不仅能够促进新产品的原型开发,也能够帮助从概念验证到可扩展、工业品质、保证生命周期硬件方案如 Toradex 的过渡。   3). 搭建开发环境 本文中演示的案例是在 Linux 电脑上开发的。所有 Cortex-M 上的代码都基于 Makefile 和 Cmake。你只需要安装少量的软件并正确配置编译工具链,就可以编译示例代码。   a). 我们建议使用 4.9 2015 Q3 版本 linaro toolchain。从这里下载好压缩包后,解压如下: ------------------------------------------- tar xjf ~/Downloads/gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.bz2 ------------------------------------------- b). 因为编译工具生成 32位应用,所以需要安装 32位的 libc 和 libncurse。在 Ubuntu 上,命令如下: ------------------------------------------- sudo dpkg --add-architecture i386 sudo apt-get update sudo apt-get install libc6:i386 libncurses5:i386 ------------------------------------------- c). 现在可以测试编译工具: ------------------------------------------- ~/gcc-arm-none-eabi-4_9-2015q3/bin/arm-none-eabi-gcc –version arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 4.9.3 20150529 (release) [ARM/embedded-4_9-branch revision 227977] Copyright (C) 2014 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ------------------------------------------- d). 最后,安装 cmake 和 make: ------------------------------------------- sudo apt-get install make cmake ------------------------------------------- 4). 下载示例 我们准备了一些示例,方便下载和测试,包括基本的 双核通信“Hello, World!”。下载源代码: ------------------------------------------- $ git clone -b colibri-imx7-m4-freertos-v8 git://git.toradex.com/freertos-toradex.git freertos-colibri-imx7/ $ cd freertos-colibri-imx7/ ------------------------------------------- 所有我们将会使用的源码都在这个文件夹里面。其中的文件已经能够支持 Colibri iMX7 和 FreeRTOS。在所有这些文件中,我们主要使用包含示例的的文件夹: ------------------------------------------- [raul@localhost freertos-colibri-imx7]$ tree -L 2 examples/imx7_colibri_m4/ examples/imx7_colibri_m4/ ├── board.c ├── board.h ├── clock_freq.c ├── clock_freq.h ├── demo_apps │   ├── blinking_imx_demo │   ├── hello_world │   ├── hello_world_ddr │   ├── hello_world_ocram │   ├── low_power_imx7d │   ├── rpmsg │   └── sema4_demo ├── driver_examples │   ├── adc_imx7d │   ├── ecspi │   ├── flexcan │   ├── gpio_imx │   ├── gpt │   ├── i2c_imx │   ├── uart_imx │   └── wdog_imx ├── gpio_pins.c ├── gpio_pins.h ├── pin_mux.c └── pin_mux.h   17 directories, 8 files [raul@localhost freertos-colibri-imx7]$ -------------------------------------------   5). 搭建硬件环境 本文中,我们将不涉及如何调试 Cortex-M 的内容,我们使用 UART 打印固件的输出信息。了解如何搭建产品开发环境是十分重要的。由于 Cortex-M 和  Cortex-A 共享外设接口,你需要知道 UART B 被 Cortex-M 上的固件输出打印信息,UART A 则由 Cortex-A (U-boot and Linux) 使用。     所以我们将使用 UART A 和 UART B。对于 UART A,在 Aster 上已经有 FTDI 芯片,可以直接连接 USB X4。该接口不仅用于给载板供电,还可以访问 UART-A, 所以当连接到电脑后,/dev/ttyUSBX 设备将会被自动识别。   对于 UART B, Colibri iMX7  的 TX 和 RX 引脚在 X20 扩展口上。因为没有 FTDI 或者 RS-232 转换器,你需要使用 FTDI 串口线。连接 RX、TX 和 GND 到 X20 的 第8、10、9 引脚。   最后,图下图所示连接:   现在都已经正确连接,在 Linux 使用 picocom 打开两个终端,打开串口:   终端 1: ------------------------------------------- [raul@localhost ~]$ picocom -b 115200 /dev/ttyUSB0 ------------------------------------------- 终端 2: ------------------------------------------- [raul@localhost ~]$ picocom -b 115200 /dev/ttyUSB1 -------------------------------------------   6). 编译第一个示例 a). 进入 SPI 示例目录,编译第一个应用: ------------------------------------------- [raul@localhost freertos-colibri-imx7]$ cd examples/imx7_colibri_m4/driver_examples/ecspi/ecspi_interrupt/master/ [raul@localhost master]$ ls armgcc hardware_init.c main.c ------------------------------------------- b). 所有的示例都有 main.c 、hardware_init.c 和 armgcc 文件夹。我们先不解释源代码,只是进入目录,导出下载的 toolchain 路径然后编译: ------------------------------------------- [raul@localhost armgcc]$ cd .. [raul@localhost master]$ cd armgcc/ [raul@localhost armgcc]$ export ARMGCC_DIR=~/gcc-arm-none-eabi-4_9-2015q3/ [raul@localhost armgcc]$ ./build_all.sh -- TOOLCHAIN_DIR: /home/raul/gcc-arm-none-eabi-4_9-2015q3/ -- BUILD_TYPE: Debug -- TOOLCHAIN_DIR: /home/raul/gcc-arm-none-eabi-4_9-2015q3/ -- BUILD_TYPE: Debug -- Could not determine Eclipse version, assuming at least 3.6 (Helios). Adjust CMAKE_ECLIPSE_VERSION if this is wrong. -- The ASM compiler identification is GNU -- Found assembler: /home/raul/gcc-arm-none-eabi-4_9-2015q3//bin/arm-none-eabi-gcc -- Configuring done -- Generating done -- Build files have been written to: /home/raul/freertos-colibri-imx7/examples/imx7_colibri_m4/driver_examples/ecspi/ecspi_interrupt/master/armgcc Scanning dependencies of target ecspi_interrupt_master_example [  5%] Building C object CMakeFiles/ecspi_interrupt_master_example.dir/home/raul/freertos-colibri-imx7/platform/utilities/src/debug_console_imx.c.obj ... ... ... [ 94%] Building C object CMakeFiles/ecspi_interrupt_master_example.dir/home/raul/freertos-colibri-imx7/platform/drivers/src/uart_imx.c.obj [100%] Linking C executable debug/ecspi_interrupt_master_example.elf [100%] Built target ecspi_interrupt_master_example -- TOOLCHAIN_DIR: /home/raul/gcc-arm-none-eabi-4_9-2015q3/ -- BUILD_TYPE: Release -- Eclipse version is set to 3.6 (Helios). Adjust CMAKE_ECLIPSE_VERSION if this is wrong. -- Configuring done -- Generating done CMake Warning:   Manually-specified variables were not used by the project:       CMAKE_TOOLCHAIN_FILE     -- Build files have been written to: /home/raul/freertos-colibri-imx7/examples/imx7_colibri_m4/driver_examples/ecspi/ecspi_interrupt/master/armgcc [  5%] Building ASM object CMakeFiles/ecspi_interrupt_master_example.dir/home/raul/freertos-colibri-imx7/platform/devices/MCIMX7D/startup/gcc/startup_MCIMX7D_M4.S.obj ... ... ... [ 94%] Building C object CMakeFiles/ecspi_interrupt_master_example.dir/home/raul/freertos-colibri-imx7/platform/drivers/src/uart_imx.c.obj [100%] Linking C executable release/ecspi_interrupt_master_example.elf [100%] Built target ecspi_interrupt_master_example [raul@localhost armgcc]$            The binaries are located in the "release" directory. [raul@localhost armgcc]$ cd release/ [raul@localhost release]$ ls ecspi_interrupt_master_example.bin  ecspi_interrupt_master_example.hex ecspi_interrupt_master_example.elf  ecspi_interrupt_master_example.map [raul@localhost release]$ ------------------------------------------- 在这里, bin 文件是最重要的。我们使用 U-boot 将其加载到 Cortex-M4。   7). 运行固件程序 为了运行固件程序,U-boot 需要加载这个二进制文件,然后在 Cortex-M 上运行。也可以用另外的方法。我的建议是使用 SD 卡或者网络。我们将会演示如何使用这两种方法。一方面,需要知道的是使用网络,开发将以动态的方式进行,因为不需要在载板上拔插 SD 卡。另一方面,为了使用以太网加载文件,你需要配置 tftp 服务器,我这里配置为 "/srv/tftp/"。参考 Flashing Linux Over Ethernet 了解 tftp 配置。   a). SD 卡: 复制文件到 SD 卡,然后放到载板上: ------------------------------------------- [raul@localhost release]$ df Filesystem              1K-blocks      Used Available Use% Mounted on /dev/sdb1                 7780496    469540   7310956   7% /run/media/raul/DATA [raul@localhost release]$ cp ecspi_interrupt_master_example.bin /run/media/raul/DATA [raul@localhost release]$ umount /run/media/raul/DATA -------------------------------------------   b). 以太网: 复制文件到 tftp 服务器目录,在载板上连接网线,配置好能够连接到电脑的网络。这里载板的 IP 是 192.168.0.170,电脑 IP 为 192.168.0.150。 ------------------------------------------- [raul@localhost release]$ cp ecspi_interrupt_master_example.bin /srv/tftp/ -------------------------------------------   c). 开启载板电源,上电的时候,在 UART-A (U-boot and Linux)  终端上按下任意按键。进入 U-boot,加载可执行文件。   ./ SD 卡: ------------------------------------------- Colibri iMX7 # fatload mmc 0:1 0x7F8000 ecspi_interrupt_master_example.bin reading ecspi_interrupt_master_example.bin 9956 bytes read in 20 ms (485.4 KiB/s) ------------------------------------------- ./ 以太网:   Colibri iMX7 # tftp 0x7F8000 ecspi_interrupt_master_example.bin Using FEC0 device TFTP from server 192.168.0.150; our IP address is 192.168.0.170 Filename 'ecspi_interrupt_master_example.bin'. Load address: 0x7f8000 Loading: ################################################## 9.7 KiB 647.5 KiB/s done Bytes transferred = 9956 (26e4 hex) ------------------------------------------- d). 加载完成后,无论是使用 SD 卡还是以太网,执行下面的命令运作已经加载到 Cortex-M 上的程序。   ------------------------------------------- Colibri iMX7 # dcache flush Colibri iMX7 # bootaux 0x7F8000 ## Starting auxiliary core at 0x007F8000 ... Colibri iMX7 # ------------------------------------------- e). 接下来,你应该可以看到在 UART B 终端上打印出 Cortex-M 的调试信息。你的屏幕如下图所示。 f). 在 UART B 终端里按 “s”之前,试着将 SPI MISO 和 MOSI 连接起来。这样就可以看到在回环模式下的通信,不仅是发送数据,还可以接收 SPI 数据。   ------------------------------------------- -------------- ECSPI master driver example -------------- This example application demonstrates usage of SPI driver in master mode. It transfers data to/from remote MCU in SPI slave mode. Press "s" when spi slave is ready. MASTER: Transmited data: 1 : Received data: 1 MASTER: Transmited data: 2 : Received data: 2 ... ... ... MASTER: Transmited data: 19 : Received data: 19 MASTER: Transmited data: 20 : Received data: 20 -------------------------------------------   8). 示例 - SPI a). 在之前的示例中,我们只编译和执行了代码。现在我们将修改源码,实现同 Microchip MCP3008 的 SPI 通信。这个一个10位 ADC,具有8个输入。按下图连接到 Aster 和面包板:   b). 如果喜欢使用 Eclipse IDE,可以通过 CMake 生成 Eclipse 项目文件。 Cmake 的 -G 参数可以配置 “build system generator”。确保 build_all.sh 指定 “Eclipse CDT4 – Unix Makefiles”。   ./ 在 armgcc 示例目录中: ------------------------------------------- [raul@localhost armgcc]$ vi build_all.sh #!/bin/sh cmake -DCMAKE_TOOLCHAIN_FILE="../../../../../../../tools/cmake_toolchain_files/armgcc.cmake" -G "Eclipse CDT4 - Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug . make -j4 cmake -DCMAKE_TOOLCHAIN_FILE="../../../../../../../tools/cmake_toolchain_files/armgcc.cmake" -G "Eclipse CDT4 - Unix Makefiles" -DCMAKE_BUILD_TYPE=Release . make -j4 ------------------------------------------- ./ 接下来运行 “build_all.sh”脚本: ------------------------------------------- [raul@localhost armgcc]$ ./build_all.sh [raul@localhost armgcc]$ ls .cproject .project .cproject .project ------------------------------------------- ./ 打开 Eclipse 并导入项目 File > Import… ./ 在 “Select root directory”,输入 “armgcc”文件夹目录 ------------------------------------------- /home/raul/freertos-colibri-imx7/examples/imx7_colibri_m4/driver_examples/ecspi/ecspi_interrupt/master/armgcc ------------------------------------------- ./ 打开目录中的 main.c”文件 [TARGET] → [exec]ecspi_interrupt_master_example → Source Files   ./ 标准的示例是十分简单的。我们有必要介绍部分代码,从而在下面的示例中能够清楚地了解需要查看什么地方。 ------------------------------------------- int main(void) {     uint8_t control_char;     uint8_t i;       ecspi_init_config_t ecspiMasterInitConfig = {         .baudRate = 500000,         .mode = ecspiMasterMode,         .burstLength = ECSPI_MASTER_BURSTLENGTH,         .channelSelect = BOARD_ECSPI_CHANNEL,         .clockPhase = ecspiClockPhaseSecondEdge,         .clockPolarity = ecspiClockPolarityActiveHigh,         .ecspiAutoStart = ECSPI_MASTER_STARTMODE     };       /* Hardware initialize, include RDC, CLOCK, IOMUX, ENABLE MODULE */     hardware_init();       /* Update clock frequency of this module */     ecspiMasterInitConfig.clockRate = get_ecspi_clock_freq(BOARD_ECSPI_BASEADDR);       PRINTF(" -------------- ECSPI master driver example -------------- ");     PRINTF("This example application demonstrates usage of SPI driver in master mode. ");     PRINTF("It transfers data to/from remote MCU in SPI slave mode. ");       /* Ecspi module initialize, include configure parameters */     ECSPI_MasterConfig(&ecspiMasterInitConfig);       /* Wait slave ready, then press 's' to start communication. */     while(true)     {         PRINTF("Press "s" when spi slave is ready. ");         control_char = GETCHAR();         if((control_char == 's') || (control_char == 'S'))             break;     }     /* Send 1~20 to slave and receive data from slave */     for(i = 0; i < 20; i++)     {         txData[0]++;         ECSPI_MasterTransfer((uint8_t*)txData, (uint8_t*)rxData, 1);         while(ECSPI_MasterGetTransferStatus());         PRINTF("MASTER: Transmited data: %d ", txData[0]);         PRINTF("      : Received data: %d ", rxData[0]);     }     while(1); } ------------------------------------------- ./ 第一个需要注意的配置引脚复用的地方。这里我们将使用标准的 SPI。右击“hardware_init();”函数,选择“Open Declaration” ------------------------------------------- void hardware_init(void) {     /* Board specific RDC settings */     BOARD_RdcInit();     /* Board specific clock settings */     BOARD_ClockInit();     /* initialize debug uart */     dbg_uart_init();       /* RDC ECSPI */     RDC_SetPdapAccess(RDC, BOARD_ECSPI_RDC_PDAP, 3 << (BOARD_DOMAIN_ID * 2), false, false);     /* Select board ecspi clock derived from OSC clock(24M) */     CCM_UpdateRoot(CCM, BOARD_ECSPI_CCM_ROOT, ccmRootmuxEcspiOsc24m, 0, 0);     /* Enable ecspi clock gate */     CCM_EnableRoot(CCM, BOARD_ECSPI_CCM_ROOT);     CCM_ControlGate(CCM, BOARD_ECSPI_CCM_CCGR, ccmClockNeededAll);     /* Configure ecspi pin IOMUX */     configure_ecspi_pins(BOARD_ECSPI_BASEADDR); } ------------------------------------------- ./ 主要的硬件初始化和配置都在这个函数中完成。SPI 引脚的配置在最后一个函数“configure_ecspi_pins(BOARD_ECSPI_BASEADDR);”。 ------------------------------------------- void configure_ecspi_pins(ECSPI_Type* base) {          // ECSPI1 iomux configuration          /* daisy chain selection */          IOMUXC_ECSPI3_MISO_SELECT_INPUT = 0;  //(I2C1_SCL  SODIM 90)          IOMUXC_ECSPI3_MOSI_SELECT_INPUT = 0;  //(I2C1_SCL  SODIM 90)            /* iomux */          IOMUXC_SW_MUX_CTL_PAD_I2C2_SCL = IOMUXC_SW_MUX_CTL_PAD_I2C2_SCL_MUX_MODE(3);    /* ECSPI SLK  */          IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA = IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA_MUX_MODE(3);    /* ECSPI MOSI */          IOMUXC_SW_MUX_CTL_PAD_I2C1_SCL = IOMUXC_SW_MUX_CTL_PAD_I2C1_SCL_MUX_MODE(3);    /* ECSPI MISO  */          IOMUXC_SW_MUX_CTL_PAD_I2C2_SDA  = IOMUXC_SW_MUX_CTL_PAD_I2C2_SDA_MUX_MODE(3);     /* ECSPI SS0 */            /* pad control */          IOMUXC_SW_PAD_CTL_PAD_I2C2_SCL =    IOMUXC_SW_PAD_CTL_PAD_I2C2_SCL_PE_MASK  |                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SCL_PS(0)    |      /* pull down */                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SCL_DSE(0)   |                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SCL_HYS_MASK;            IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA = IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA_DSE(0)   |                             IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA_HYS_MASK;            IOMUXC_SW_PAD_CTL_PAD_I2C1_SCL = IOMUXC_SW_PAD_CTL_PAD_I2C1_SCL_HYS_MASK;            IOMUXC_SW_PAD_CTL_PAD_I2C2_SDA  =  IOMUXC_SW_PAD_CTL_PAD_I2C2_SDA_PE_MASK   |                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SDA_PS(3)     |      /* pull up */                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SDA_DSE(0)    |                             IOMUXC_SW_PAD_CTL_PAD_I2C2_SDA_HYS_MASK; } ------------------------------------------- ./ 另外一个重要的文件是“board.h”。在同一个函数中,搜索 "configure_ecspi_pins (BOARD_ECSPI_BASEADDR);" 中的 "BOARD_ECSPI_BASEADDR",你将会发现部分“board.h”内容,这里配置除了 SPI 外的其他内容,例如中断向量表。 ------------------------------------------- /* Colibri SPI is ECSPI3 */ #define BOARD_ECSPI_RDC_PDAP                rdcPdapEcspi3 #define BOARD_ECSPI_CCM_ROOT                ccmRootEcspi3 #define BOARD_ECSPI_CCM_CCGR                ccmCcgrGateEcspi3 #define BOARD_ECSPI_BASEADDR                ECSPI3 #define BOARD_ECSPI_CHANNEL                 ecspiSelectChannel0 #define BOARD_ECSPI_IRQ_NUM                 eCSPI3_IRQn #define BOARD_ECSPI_HANDLER                 eCSPI3_Handler ------------------------------------------- ./ 回到“main.c”我将改变主函数,获取 MCP3008 的数据。具体地讲,我们将读取芯片 channel 0 的数据。 ------------------------------------------- /* Wait slave ready, then press 's' to start communication. */     while(true)     {         PRINTF("Press "s" when spi slave is ready. ");         control_char = GETCHAR();         if((control_char == 's') || (control_char == 'S'))             break;     } ------------------------------------------- ./ 删除“break”,增加下面的代码。根据 MCP3008 白皮书,“00000001 10000000 00000000”序列分别表示起始位、通道选择和10位数据的信息。 ------------------------------------------- /* Wait slave ready, then press 's' to start communication. */          while(true)          {                    PRINTF("Press "s" when spi slave is ready. ");                    control_char = GETCHAR();                    if((control_char == 's') || (control_char == 'S'))                    {                             unsigned char datatx[3];                             unsigned char datarx[3];                             datatx[0] = 0b00000001;  //  first byte transmitted -> start bit                             datatx[1] = 0b10000000; // second byte transmitted -> (SGL/DIF = 1, D2=D1=D0=0)                             datatx[2] = 0b00000000; // third byte transmitted....don't care                               /* SPI Read */                             ECSPI_MasterTransfer((uint8_t*)&datatx[0], (uint8_t*)&datarx[0], 3);                             while(ECSPI_MasterGetTransferStatus());                             PRINTF("Transmited data: %d ", datatx[0]);                             PRINTF("Transmited data: %d ", datatx[1]);                             PRINTF("Transmited data: %d ", datatx[2]);                             PRINTF("Received data: %d ", datarx[0]);                             PRINTF("Received data: %d ", datarx[1]);                             PRINTF("Received data: %d ", datarx[2]);                             unsigned int a2dVal = 0;                             a2dVal = (datarx[1]<< 8) & 0b1100000000; //merge data[1] & data[2] to get result                             a2dVal |=  (datarx[2] & 0xff);                               PRINTF("data = %d ", a2dVal);                    }          } ------------------------------------------- ./ 修改完毕后,“int main (void)” 应该如下: ------------------------------------------- int main(void) {          uint8_t control_char;          uint8_t i;            ecspi_init_config_t ecspiMasterInitConfig = {                             .baudRate = 500000,                             .mode = ecspiMasterMode,                             .burstLength = ECSPI_MASTER_BURSTLENGTH,                             .channelSelect = BOARD_ECSPI_CHANNEL,                             .clockPhase = ecspiClockPhaseSecondEdge,                             .clockPolarity = ecspiClockPolarityActiveHigh,                             .ecspiAutoStart = ECSPI_MASTER_STARTMODE          };            /* Hardware initialize, include RDC, CLOCK, IOMUX, ENABLE MODULE */          hardware_init();            /* Update clock frequency of this module */          ecspiMasterInitConfig.clockRate = get_ecspi_clock_freq(BOARD_ECSPI_BASEADDR);            PRINTF(" -------------- ECSPI master driver example -------------- ");          PRINTF("This example application demonstrates usage of SPI driver in master mode. ");          PRINTF("It transfers data to/from remote MCU in SPI slave mode. ");            /* Ecspi module initialize, include configure parameters */          ECSPI_MasterConfig(&ecspiMasterInitConfig);            /* Wait slave ready, then press 's' to start communication. */          while(true)          {                    PRINTF("Press "s" when spi slave is ready. ");                    control_char = GETCHAR();                    if((control_char == 's') || (control_char == 'S'))                    {                             unsigned char datatx[3];                             unsigned char datarx[3];                             datatx[0] = 0b00000001;  //  first byte transmitted -> start bit                             datatx[1] = 0b10000000; // second byte transmitted -> (SGL/DIF = 1, D2=D1=D0=0)                             datatx[2] = 0b00000000; // third byte transmitted....don't care                               /* SPI Read */                             ECSPI_MasterTransfer((uint8_t*)&datatx[0], (uint8_t*)&datarx[0], 3);                             while(ECSPI_MasterGetTransferStatus());                             PRINTF("Transmited data: %d ", datatx[0]);                             PRINTF("Transmited data: %d ", datatx[1]);                             PRINTF("Transmited data: %d ", datatx[2]);                             PRINTF("Received data: %d ", datarx[0]);                             PRINTF("Received data: %d ", datarx[1]);                             PRINTF("Received data: %d ", datarx[2]);                               unsigned int a2dVal = 0;                             a2dVal = (datarx[1]<< 8) & 0b1100000000; //merge data[1] & data[2] to get result                             a2dVal |=  (datarx[2] & 0xff);                               PRINTF("data = %d ", a2dVal);                    }          } } ------------------------------------------- ./ 重新编译,根据前面的示例通过 SD 卡或者以太网复制,执行二进制程序。   SD 卡: ------------------------------------------- [raul@localhost release]$ df Filesystem              1K-blocks      Used Available Use% Mounted on /dev/sdb1                 7780496    469540   7310956   7% /run/media/raul/DATA [raul@localhost release]$ cp ecspi_interrupt_master_example.bin /run/media/raul/DATA [raul@localhost release]$ umount /run/media/raul/DATA ------------------------------------------- 以太网: ------------------------------------------- [raul@localhost release]$ cp ecspi_interrupt_master_example.bin /srv/tftp/ -------------------------------------------   ./ 将SD卡插入载板或者配置网络来执行编译好的二进制文件 SD 卡: ------------------------------------------- Colibri iMX7 # fatload mmc 0:1 0x7F8000 ecspi_interrupt_master_example.bin reading ecspi_interrupt_master_example.bin 9956 bytes read in 20 ms (485.4 KiB/s) ------------------------------------------- 以太网: ------------------------------------------- Colibri iMX7 # tftp 0x7F8000 ecspi_interrupt_master_example.bin Using FEC0 device TFTP from server 192.168.0.150; our IP address is 192.168.0.170 Filename 'ecspi_interrupt_master_example.bin'. Load address: 0x7f8000 Loading: ##################################################  9.7 KiB           647.5 KiB/s done Bytes transferred = 9956 (26e4 hex) ------------------------------------------- ./ 一旦固件加载完毕,使用哪种方法就不再重要,执行下面命令运行 Cortex-M 上加载的程序。 ------------------------------------------- Colibri iMX7 # dcache flush Colibri iMX7 # bootaux 0x7F8000 ## Starting auxiliary core at 0x007F8000 ... Colibri iMX7 # ------------------------------------------- ./ 现在使用修改后的代码,在 UART B 终端中按“s”将显示 channel 0 上模拟采集。   9). 同 Linux 之间的冲突 在使用这些 U-boot 命令之后,你或许想要在启动 Linux 后运行“boot”命令。现在的问题是,我们的示例使用了 UART B 和 the SPI。想要正常启动 Linux,就需要修改 device tree,让 Linux 不去使用这些资源。   你可以使用下面的命令,暂时关闭  UART B 和 SPI,而无需修改 device tree: ------------------------------------------- Colibri iMX7 # setenv fdt_fixup 'fdt addr ${fdt_addr_r} && fdt rm /soc/aips-bus@30800000/spba-bus@30800000/serial@30890000  && fdt rm /soc/aips-bus@30800000/spba-bus@30800000/ecspi@30840000' Colibri iMX7 # saveenv Saving Environment to NAND... Erasing NAND... Erasing at 0x380000 -- 100% complete. Writing to NAND... OK ------------------------------------------- 更多关于修改 device tree 的内容,可以参考 Toradex 开发者中心网站上的这篇文章。   10). 自动部署 在我的演示示例中,我通过以太网加载  Cortex-M 固件程序。一个节约时间的方法是自动复制文件到“/dev/tftp/”目录中。在项目的根目录中,打开文件: ------------------------------------------- raul@localhost master]$ vi armgcc/CMakeLists.txt ------------------------------------------- 在最后面添加下面几行内容: ------------------------------------------- [raul@localhost master]$ vi armgcc/CMakeLists.txt ADD_CUSTOM_COMMAND(TARGET ${Project_Name}_Main POST_BUILD COMMAND cp ${EXECUTABLE_OUTPUT_PATH}/ecspi_interrupt_master_example.bin /srv/tftp/m4.bin) ------------------------------------------- 再次运行 “./build_all.sh”脚本,如果使用 Eclipse 编译,你可以在“console”中看到自动执行的命令: ------------------------------------------- cp /home/raul/freertos-colibri-imx7/examples/imx7_colibri_m4/driver_examples/ecspi/ecspi_interrupt/master/armgcc/release/ecspi_interrupt_master_example.bin /srv/tftp/m4.bin ------------------------------------------- 另外一个对我有帮助的优化是,在 U-boot 中创建自动加载固件程序的规则: ------------------------------------------- Colibri iMX7 # setenv m4 'tftp 0x7F8000 m4.bin && dcache flush && bootaux 0x7F8000' Colibri iMX7 # setenv bootcmd 'run m4; run ubiboot; setenv fdtfile ${soc}-colibri-${fdt_board}.dtb && run distro_bootcmd;' ------------------------------------------- 现在,每一次开启模块,就会自动加载固件程序然后运行 Linux。   11). 总结 在本文中,你可以掌握搭建异构多核处理器构架方案的基本步骤。通过两个演示示例,我们看到了如何在 Colibri iMX7 计算机模块的 HMP SoC Cortex-M4 核上编译和运行代码。我们也了解到 SoC 上的不同内核共享外设接口,所以你需要了解(以及规划)每个内核分配的外设。