一步一步写misdevice

2019-07-12 14:56发布

对于linux的驱动程序来说,主要分为三种: miscdevice、platform_device、platform_driver  。


这三个结构体关系: 
(基类) 
kobject -------------------- /                         /                           device     cdev                   driver /     (设备驱动操作方法)           /                                     miscdevice         platform_device       platform_driver (设备驱动操作方法)    (设备的资源)          (设备驱动)   


这时,我们先不讨论这几个间的关系与驱别,对于新手来说,上手最重要!


首先我们先看看混杂项:


在Linux驱动中把无法归类的五花八门的设备定义为混杂设备(用miscdevice结构体表述)。miscdevice 共享一个主设备号MISC_MAJOR(即10),但次设备号不同 。 所有的miscdevice设备形成了一个链表,对设备访问时内核根据次设备号查找对应的miscdevice设备,然后调用其file_operations结构中注册的文件操作接口进行操作。 在内核中用struct miscdevice表示miscdevice设备,然后调用其file_operations结构中注册的文件操作接口进行操作。miscdevice的API实现在drivers/char/misc.c中。 


第二,我们再看看混杂项设备驱动的程序组织架构:


新建一个first_led.c,先可能用到的头文件都引用上吧!


#include
#include //驱动模块必需要加的个头文件
#include
#include
#include
#include
#include
#include
#include
#include .


//对应着相应机器平台的头文件
#include
#include
#include




//给自己设备驱动定义一个名字


#define DEVICE_NAME "First_led"


名字有了,但样子是怎样的呢?现在就开始定义一个“样子”!


如果一个字符设备驱动要驱动多个设备,那么它就不应该用


misc设备来实现。


 


通常情况下,一个字符设备都不得不在初始化的过程中进行下面的步骤: 


通过alloc_chrdev_region()分配主次设备号。


使用cdev_init()和cdev_add()来以一个字符设备注册自己。


 


而一个misc驱动,则可以只用一个调用misc_register()


来完成这所有的步骤。 (所以 misc device是一种特殊的chrdev字符设备驱动)


所有的miscdevice设备形成一个链表,对设备访问时,内核根据次设备号查找


对应的miscdevice设备,然后调用其file_operations中注册的文件操作方法进行操作。


 在Linux内核中,使用struct miscdevice来表示miscdevice。这个结构体的定义为:


 


struct miscdevice  


{


int minor;


const char *name;


const struct file_operations *fops;


struct list_head list;


struct device *parent;


struct device *this_device;


const char *nodename;


mode_t mode;


};


minor是这个混杂设备的次设备号,若由系统自动配置,则可以设置为


MISC_DYNANIC_MINOR,name是设备名 


为了容易理解,我们先打大概的“样子”做好。只做minor、name、fops;


定义一个myfirst_led_dev设备:




static struct miscdevice myfirst_led_dev = {
  .minor = MISC_DYNAMIC_MINOR,
  .name = DEVICE_NAME,
  .fops = &myfirst_led_dev_fops,
};


Minor  name   都已经定义好了。那么接下来实现一下myfirst_led_dev _fops方法。


内核中关于file_operations的结构体如下:


struct file_operations {


struct module *owner;


loff_t (*llseek) (struct file *, loff_t, int);


ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);


ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);


ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);


ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);


int (*readdir) (struct file *, void *, filldir_t);


unsigned int (*poll) (struct file *, struct poll_table_struct *);


long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);


long (*compat_ioctl) (struct file *, unsigned int, unsigned long);


int (*mmap) (struct file *, struct vm_area_struct *);


int (*open) (struct inode *, struct file *);


int (*flush) (struct file *, fl_owner_t id);


int (*release) (struct inode *, struct file *);


int (*fsync) (struct file *, int datasync);


int (*aio_fsync) (struct kiocb *, int datasync);


int (*fasync) (int, struct file *, int);


int (*lock) (struct file *, int, struct file_lock *);


ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);


unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);


int (*check_flags)(int);


int (*flock) (struct file *, int, struct file_lock *);


ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);


ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);


int (*setlease)(struct file *, long, struct file_lock **);


long (*fallocate)(struct file *file, int mode, loff_t offset,


  loff_t len);


};


对于LED的操作,只需要简单实现io操作就可以了,所以只实现


long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);


( 该函数是在 linux2.6.5以后才出现在设备的操作方法中的。 )


函数参数为文件节点、命令、参数




static struct file_operations myfirst_led_dev_fops = {
  .owner = THIS_MODULE,
  .unlocked_ioctl = myfirst_led_ioctl,
};


到了这里,我们就考虑一下 LED的物理层面是怎样的实现了,通过开发板的引脚我们可以知道,四个LED是分别接到了GPJ2的0~3号管脚上。因此,我们定义一个数组来引用这几个管脚(当然不能像祼机那样对IO的物理地址进行操作了,是需要经过内核的内存映射得来的IO内存操作!而内核把ARM的IO管脚地址按一个线性地址进行了编排)




static int led_gpios[] = {
  S5PV210_GPJ2(0),
  S5PV210_GPJ2(1),
  S5PV210_GPJ2(2),
  S5PV210_GPJ2(3),
};
#define LED_NUM ARRAY_SIZE(led_gpios)//判断led_gpio有多少个


S5PV210_GPJ2(*)的定义如下


#define S5PV210_GPJ2(_nr)  (S5PV210_GPIO_J2_START + (_nr))











enum s5p_gpio_number {


S5PV210_GPIO_A0_START = 0,


...................................


S5PV210_GPIO_J2_START = S5PV210_GPIO_NEXT(S5PV210_GPIO_J1),


.....................................


}











#define S5PV210_GPIO_NEXT(__gpio)


((__gpio##_START) + (__gpio##_NR) + CONFIG_S3C_GPIO_SPACE + 1)


( 注: ##是粘贴运算,具体用法请自行找度娘或谷哥 )


给用户空间的接口操作:


static long myfirst_led_ioctl(struct file *filp, unsigned int cmd,
    unsigned long arg)
{
  switch(cmd) {
    case 0:
    case 1:
      if (arg > LED_NUM) {
        return -EINVAL;//判读用户的参数是否有误
      }


      gpio_set_value(led_gpios[arg], !cmd);//用户选定的LED并设置值
      //printk(DEVICE_NAME": %d %d ", arg, cmd);
      break;
    default:
      return -EINVAL;
  }
  return 0;
}


对于gpio_set_value(unsigned int gpio, int value),内核有以下定义:


static inline void gpio_set_value(unsigned int gpio, int value)


{


__gpio_set_value(gpio, value);


}











void __gpio_set_value(unsigned gpio, int value)


{


struct gpio_chip *chip;


chip = gpio_to_chip(gpio);


WARN_ON(chip->can_sleep);


trace_gpio_value(gpio, 0, value);


chip->set(chip, gpio - chip->base, value);


} //到这里我们就不再分析下去了 ,无非就是判定是哪一个芯片


程序写到这里,对于用户空间来说,已经有了完整的操作方法接口,但对于内核模块来说,还缺少驱动模块的进入与退出。以下接着写驱动模块的初始化(即进入)和退出。


static int __init myfirst_led_dev_init(void) {;}


static void __exit myfirst_led_dev_exit(void) {;}


函数如上。 双下划线表示模块在内核启动和关闭时自动运行和退出


对于驱动模块的初始化函数,要写些什么呢?我们这样考虑:


对于用户空间接口来说,我们的实现函数只是给出了IO的值设置的,但是ARM的IO管脚使用还是需要配置方向、上拉下拉.....才能正常使用的,并且所有的硬件资源,都是受内核所支配的,驱动程序必需向内核申请硬件资源才能对硬件进行操作。另外还需要对设备进行注册,内核才知道你这个设备是什么东东,用到哪些东西。这些操作,我们安排在init里实现!


static int __init myfirst_led_dev_init(void) 
{
  int ret;
  int i;


  for (i = 0; i < LED_NUM; i++) 
  {
    ret = gpio_request(led_gpios[i], "LED");//申请IO引脚
    if (ret) {
        printk("%s: request GPIO %d for LED failed, ret = %d ", DEVICE_NAME,
          led_gpios[i], ret);
        return ret;
        }
    s3c_gpio_cfgpin(led_gpios[i], S3C_GPIO_OUTPUT);
    gpio_set_value(led_gpios[i], 1);
  }
  ret = misc_register(&myfirst_led_dev);
  printk(DEVICE_NAME" initialized ");
  return ret;
}


pio_request(unsigned gpio, const char *label)  


gpio则为你要申请的哪一个管脚,label为其名字 。


int s3c_gpio_cfgpin(unsigned int pin, unsigned int config);


对芯片进行判断,并设置引脚的方向。


ret = misc_register(&myfirst_led_dev);.


对设备进行注册


到这里,设备的初始化与注册已经完成!


当用户不再需要该驱动资源时,我们必需在驱动模块中,对占用内核的资源进行主动的释放!


因此在驱动模块退出时,完成这些工作!




static void __exit myfirst_led_dev_exit(void) {
  int i;


  for (i = 0; i < LED_NUM; i++) {
    gpio_free(led_gpios[i]);
  }


  misc_deregister(&myfirst_led_dev);
}


gpio_free(led_gpios[i]);


释放IO资源


misc_deregister(&m yfirst _led_dev);


注销设备


还需要模块的初始化与退出函数声明


module_init(m yfirst _led_dev_init);


module_exit(m yfirst _led_dev_init);


最后,为了保持内核驱动模块的风格,我们还要加上相应的许可跟作者


MODULE_LICENSE("GPL");


MODULE_AUTHOR("FriendlyARM Inc.");


好了,程序已经打好出来了(黄 {MOD}代码),我们把它整理好,试下编译一下试试效果(晚点补上效果)。