矩阵、向量初始化
#include
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
MatrixXf m1(3,4); //动态矩阵,建立3行4列。
MatrixXf m2(4,3); //4行3列,依此类推。
MatrixXf m3(3,3);
Vector3f v1; //若是静态数组,则不用指定行或者列
/* 初始化 */
Matrix3d m = Matrix3d::Random();
m1 = MatrixXf::Zero(3,4); //用0矩阵初始化,要指定行列数
m2 = MatrixXf::Zero(4,3);
m3 = MatrixXf::Identity(3,3); //用单位矩阵初始化
v1 = Vector3f::Zero(); //同理,若是静态的,不用指定行列数
m1 << 1,0,0,1, //也可以以这种方式初始化
1,5,0,1,
0,0,9,1;
m2 << 1,0,0,
0,4,0,
0,0,7,
1,1,1;
//向量初始化,与矩阵类似
Vector3d v3(1,2,3);
VectorXf vx(30);
}
C++数组和矩阵转换
使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:
//@param MatrixType 矩阵类型
//@param MapOptions 可选参数,指的是指针是否对齐,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可选参数,步长
/*
Map
*/
int i;
//数组转矩阵
double *aMat = new double[20];
for(i =0;i<20;i++)
{
aMat[i] = rand()%11;
}
//静态矩阵,编译时确定维数 Matrix
Eigen:Map > staMat(aMat);
//输出
for (int i = 0; i < staMat.size(); i++)
std::cout << *(staMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//动态矩阵,运行时确定 MatrixXd
Map dymMat(aMat,4,5);
//输出,应该和上面一致
for (int i = 0; i < dymMat.size(); i++)
std::cout << *(dymMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//Matrix中的数据存在一维数组中,默认是行优先的格式,即一行行的存
//data()返回Matrix中的指针
dymMat.data();
矩阵基础操作
eigen重载了基础的+ - * / += -=
= /= 可以表示标量和矩阵或者矩阵和矩阵
#include
#include
using namespace Eigen;
int main()
{
//单个取值,单个赋值
double value00 = staMat(0,0);
double value10 = staMat(1,0);
staMat(0,0) = 100;
std::cout << value00 <
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2,2);
b << 2, 3,
1, 4;
Matrix2d c = a + b;
std::cout<< c<
点积和叉积
#include
#include
using namespace Eigen;
using namespace std;
int main()
{
//点积、叉积(针对向量的)
Vector3d v(1,2,3);
Vector3d w(0,1,2);
std::cout<
转置、伴随、行列式、逆矩阵
小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高
#include
#include
using namespace std;
using namespace Eigen;
int main()
{
Matrix2d c;
c << 1, 2,
3, 4;
//转置、伴随
std::cout<
计算特征值和特征向量
#include
#include
using namespace std;
using namespace Eigen;
int main()
{
//特征向量、特征值
std::cout << "Here is the matrix A:
" << a << std::endl;
SelfAdjointEigenSolver eigensolver(a);
if (eigensolver.info() != Success) abort();
std::cout << "特征值:
" << eigensolver.eigenvalues() << std::endl;
std::cout << "Here's a matrix whose columns are eigenvectors of A
"
<< "corresponding to these eigenvalues:
"
<< eigensolver.eigenvectors() << std::endl;
}
解线性方程
#include
#include
using namespace std;
using namespace Eigen;
int main()
{
//线性方程求解 Ax =B;
Matrix4d A;
A << 2,-1,-1,1,
1,1,-2,1,
4,-6,2,-2,
3,6,-9,7;
Vector4d B(2,4,4,9);
Vector4d x = A.colPivHouseholderQr().solve(B);
Vector4d x2 = A.llt().solve(B);
Vector4d x3 = A.ldlt().solve(B);
std::cout << "The solution is:
" << x <<"
"<
除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别
最小二乘求解
最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr
#include
#include
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf A1 = MatrixXf::Random(3, 2);
std::cout << "Here is the matrix A:
" << A1 << std::endl;
VectorXf b1 = VectorXf::Random(3);
std::cout << "Here is the right hand side b:
" << b1 << std::endl;
//jacobiSvd 方式:Slow (but fast for small matrices)
std::cout << "The least-squares solution is:
"
<< A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
//colPivHouseholderQr方法:fast
std::cout << "The least-squares solution is:
"
<< A1.colPivHouseholderQr().solve(b1) << std::endl;
}
稀疏矩阵
稀疏矩阵的头文件包括:
#include
typedef Eigen::Triplet T;
std::vector tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是预估的条目
for(...)
{
tripletList.push_back(T(i,j,v_ij));//第 i,j个有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!
2.直接将已知的非0值插入
SparseMatrix mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
// i,j 个非零值 v_ij != 0
mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional
稀疏矩阵支持大部分一元和二元运算:
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元运算中,稀疏矩阵和普通矩阵可以混合使用
//dm表示普通矩阵
dm2 = sm1 + dm1;
也支持计算转置矩阵和伴随矩阵
参考以下链接
点击这里跳转查看更多