转自
https://blog.csdn.net/u012769691/article/details/46814305
在飞思卡尔的时候,需要用SDMA实现内存到内存memory copy的功能,需要做两部分的工作:
1:在DMA controller中加入M2M的支持。
2:写一个驱动来调用DMA controller的M2M功能。
上面的2实际上对于不同的SoC来讲,思路是一样的,有通用性,在这里总结下。
当时在实现的时候,用了两种方法:
1:cyclic, 用dma_alloc_coherent分配两段dma 内存空间, 一段做src, 一段做dst. 调用DMA controller接口来将src中的数据往dst中拷贝。因为DMA操作的是物理内地址上连续的内存空间,dma_alloc_coherent分配不了太大的连续物理地址空间,所以,仅仅能实现小批量数据的M2M拷贝。
2:sg, 用dma_alloc_coherent分配很多段dma 内存空间,一半大小的空间做src,一半大小的空间做dst.通过device_prep_dma_sg来将各自独立的src/dst空间链接起来。这个,可以将若干段分散的物理地址链接成逻辑上连续的,可以实现较大数据的拷贝。
顺便复习下dma engine的用法:
Linux /
Documentation /
dmaengine.txt
13 The slave DMA usage consists of following steps:
14 1. Allocate a DMA slave channel
15 2. Set slave and controller specific parameters
16 3. Get a descriptor for transaction
17 4. Submit the transaction
18 5. Issue pending requests and wait for callback notification
20 1. Allocate a DMA slave channel
27 Interface:
28 struct dma_chan *dma_request_channel(dma_cap_mask_t mask,
29 dma_filter_fn filter_fn,
30 void *filter_param);
48 2. Set slave and controller specific parameters
61 Interface:
62 int dmaengine_slave_config(struct dma_chan *chan,
63 struct dma_slave_config *config)
70 3. Get a descriptor for transaction
86 Interface:
87 struct dma_async_tx_descriptor *(*chan->device->device_prep_slave_sg)(
88 struct dma_chan *chan, struct scatterlist *sgl,
89 unsigned int sg_len, enum dma_data_direction direction,
90 unsigned long flags);
91
92 struct dma_async_tx_descriptor *(*chan->device->device_prep_dma_cyclic)(
93 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
94 size_t period_len, enum dma_data_direction direction);
95
96 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
97 struct dma_chan *chan, struct dma_interleaved_template *xt,
98 unsigned long flags);
139 4. Submit the transaction
144 Interface:
145 dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
153 5. Issue pending DMA requests and wait for callback notification
163 Interface:
164 void dma_async_issue_pending(struct dma_chan *chan);
传输结束的时候可以用:
168 1. int dmaengine_terminate_all(struct dma_chan *chan)
看下面代码:
1: cyclic方式实现
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static int gMajor; //major number of device
static struct class *dma_tm_class;
static char *wbuf;
static char *rbuf;
static dma_addr_t wpaddr;
static dma_addr_t rpaddr;
struct dma_chan *dma_m2m_chan;
struct completion dma_m2m_ok;
#define SDMA_BUF_SIZE 1024
static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
if (!imx_dma_is_general_purpose(chan))
return false;
chan->private = param;
return true;
}
int sdma_open(struct inode * inode, struct file * filp)
{
dma_cap_mask_t dma_m2m_mask;
struct imx_dma_data m2m_dma_data = {0};
init_completion(&dma_m2m_ok);
dma_cap_zero(dma_m2m_mask);
dma_cap_set(DMA_SLAVE, dma_m2m_mask);
m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
m2m_dma_data.priority = DMA_PRIO_HIGH;
dma_m2m_chan = dma_request_channel(dma_m2m_mask, dma_m2m_filter, &m2m_dma_data);
if (!dma_m2m_chan) {
printk(“Error opening the SDMA memory to memory channel
”);
return -EINVAL;
}
wbuf = dma_alloc_coherent(NULL, SDMA_BUF_SIZE, &wpaddr, GFP_DMA);
rbuf = dma_alloc_coherent(NULL, SDMA_BUF_SIZE, &rpaddr, GFP_DMA);
return 0;
}
int sdma_release(struct inode * inode, struct file * filp)
{
dma_release_channel(dma_m2m_chan);
dma_m2m_chan = NULL;
dma_free_coherent(NULL, SDMA_BUF_SIZE, wbuf, wpaddr);
dma_free_coherent(NULL, SDMA_BUF_SIZE, rbuf, rpaddr);
return 0;
}
ssize_t sdma_read (struct file *filp, char __user * buf, size_t count, loff_t * offset)
{
int i;
wait_for_completion(&dma_m2m_ok);
for (i=0; i printk(“src_data_%d = %x
”,i, *(wbuf+i) );
}
for (i=0; i printk(“dst_data_%d = %x
”,i, *(rbuf+i) );
}
return 0;
}
static void dma_m2m_callback(void *data)
{
printk(“in %s
”,__func__);
complete(&dma_m2m_ok);
return ;
}
ssize_t sdma_write(struct file * filp, const char __user * buf, size_t count, loff_t * offset)
{
u32 *index1;
struct dma_slave_config dma_m2m_config;
struct dma_async_tx_descriptor *dma_m2m_desc;
int i;
index1 = wbuf;
for (i=0; i *(index1 + i) = 0x12345678;
}
for (i=0; i printk(“%d : %x
”,i, *(wbuf+i) );
}
dma_m2m_config.direction = DMA_MEM_TO_MEM;
dma_m2m_config.dst_addr = rpaddr;
dma_m2m_config.src_addr = wpaddr;
dma_m2m_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
dma_m2m_config.dst_maxburst = 4;
dma_m2m_config.src_maxburst = 4;
dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config);
dma_m2m_desc = dma_m2m_chan->device->device_prep_dma_cyclic(
dma_m2m_chan, NULL, SDMA_BUF_SIZE, SDMA_BUF_SIZE/2, DMA_MEM_TO_MEM);
dma_m2m_desc->callback = dma_m2m_callback;
dmaengine_submit(dma_m2m_desc);
return 0;
}
struct file_operations dma_fops = {
open: sdma_open,
release: sdma_release,
read: sdma_read,
write: sdma_write,
};
int __init sdma_init_module(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
struct device *temp_class;
#else
struct class_device *temp_class;
#endif
int error;
/* register a character device */
error = register_chrdev(0, “sdma_test”, &dma_fops);
if (error < 0) {
printk(“SDMA test driver can’t get major number
”);
return error;
}
gMajor = error;
printk(“SDMA test major number = %d
”,gMajor);
dma_tm_class = class_create(THIS_MODULE, “sdma_test”);
if (IS_ERR(dma_tm_class)) {
printk(KERN_ERR “Error creating sdma test module class.
”);
unregister_chrdev(gMajor, “sdma_test”);
return PTR_ERR(dma_tm_class);
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28))
temp_class = device_create(dma_tm_class, NULL,
MKDEV(gMajor, 0), NULL, “sdma_test”);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
temp_class = device_create(dma_tm_class, NULL,
MKDEV(gMajor, 0), “sdma_test”);
#else
temp_class = class_device_create(dma_tm_class, NULL,
MKDEV(gMajor, 0), NULL,
“sdma_test”);
#endif
if (IS_ERR(temp_class)) {
printk(KERN_ERR “Error creating sdma test class device.
”);
class_destroy(dma_tm_class);
unregister_chrdev(gMajor, “sdma_test”);
return -1;
}
printk(“SDMA test Driver Module loaded
”);
return 0;
}
static void sdma_cleanup_module(void)
{
unregister_chrdev(gMajor, “sdma_test”);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#else
class_device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#endif
class_destroy(dma_tm_class);
printk(“SDMA test Driver Module Unloaded
”);
}
module_init(sdma_init_module);
module_exit(sdma_cleanup_module);
2:sg方式实现
#include
include
include
include
include
include
include
include
include
include
include
include
include
include
static int gMajor; /* major number of device */
static struct class *dma_tm_class;
u32 *wbuf, *wbuf2, *wbuf3, *wbuf4;
u32 *rbuf, *rbuf2, *rbuf3, *rbuf4;
struct dma_chan *dma_m2m_chan;
struct completion dma_m2m_ok;
struct scatterlist sg[4], sg2[4];
define SDMA_BUF_SIZE 1024*60
static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{ if (!imx_dma_is_general_purpose(chan)) return false; chan->private = param; return true;
}
int sdma_open(struct inode *inode, struct file *filp)
{ dma_cap_mask_t dma_m2m_mask; struct imx_dma_data m2m_dma_data; init_completion(&dma_m2m_ok); dma_cap_zero(dma_m2m_mask); dma_cap_set(DMA_SLAVE, dma_m2m_mask); m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY; m2m_dma_data.priority = DMA_PRIO_HIGH; dma_m2m_chan = dma_request_channel(dma_m2m_mask, dma_m2m_filter, &m2m_dma_data); if (!dma_m2m_chan) { printk(“Error opening the SDMA memory to memory channel
”); return -EINVAL; } wbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!wbuf) { printk(“error wbuf !!!!!!!!!!!
”); return -1; } wbuf2 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!wbuf2) { printk(“error wbuf2 !!!!!!!!!!!
”); return -1; } wbuf3 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!wbuf3) { printk(“error wbuf3 !!!!!!!!!!!
”); return -1; } wbuf4 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!wbuf4) { printk(“error wbuf4 !!!!!!!!!!!
”); return -1; } rbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!rbuf) { printk(“error rbuf !!!!!!!!!!!
”); return -1; } rbuf2 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!rbuf2) { printk(“error rbuf2 !!!!!!!!!!!
”); return -1; } rbuf3 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!rbuf3) { printk(“error rbuf3 !!!!!!!!!!!
”); return -1; } rbuf4 = kzalloc(SDMA_BUF_SIZE, GFP_DMA); if(!rbuf4) { printk(“error rbuf4 !!!!!!!!!!!
”); return -1; } return 0;
}
int sdma_release(struct inode * inode, struct file * filp)
{ dmaengine_terminate_all(dma_m2m_chan); dma_release_channel(dma_m2m_chan); dma_m2m_chan = NULL; kfree(wbuf); kfree(wbuf2); kfree(wbuf3); kfree(rbuf); kfree(rbuf2); kfree(rbuf3); return 0;
}
ssize_t sdma_read (struct file filp, char __user buf, size_t count, loff_t * offset)
{ int i;
if 0 for (i=0; i printk(“dst data_%d : %x
”, i, (rbuf+i)); } for (i=0; i printk(“dst data2_%d : %x
”, i, (rbuf2+i)); } for (i=0; i printk(“dst data3_%d : %x
”, i, *(rbuf3+i)); }
endif for (i=0; i if ((rbuf+i) != (wbuf+i)) { printk(“buffer 1 copy falled!
”); return 0; } } printk(“buffer 1 copy passed!
”); for (i=0; i if ((rbuf2+i) != (wbuf2+i)) { printk(“buffer 2 copy falled!
”); return 0; } } printk(“buffer 2 copy passed!
”); for (i=0; i if ((rbuf3+i) != (wbuf3+i)) { printk(“buffer 3 copy falled!
”); return 0; } } printk(“buffer 3 copy passed!
”); for (i=0; i if ((rbuf4+i) != (wbuf4+i)) { printk(“buffer 4 copy falled!
”); return 0; } } printk(“buffer 4 copy passed!
”); return 0;
}
static void dma_m2m_callback(void *data)
{ complete(&dma_m2m_ok); return ;
}
ssize_t sdma_write(struct file * filp, const char __user * buf, size_t count, loff_t * offset)
{ u32 index1, *index2, *index3, *index4, i, ret; struct dma_slave_config dma_m2m_config; struct dma_async_tx_descriptor *dma_m2m_desc; index1 = wbuf; index2 = wbuf2; index3 = wbuf3; index4 = wbuf4; struct timeval end_time; unsigned long end, start; for (i=0; i (index1 + i) = 0x12121212; } for (i=0; i(index2 + i) = 0x34343434; } for (i=0; i (index3 + i) = 0x56565656; } for (i=0; i *(index4 + i) = 0x78787878; }
endif dma_m2m_config.direction = DMA_MEM_TO_MEM; dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config); sg_init_table(sg, 4); sg_set_buf(&sg[0], wbuf, SDMA_BUF_SIZE); sg_set_buf(&sg[1], wbuf2, SDMA_BUF_SIZE); sg_set_buf(&sg[2], wbuf3, SDMA_BUF_SIZE); sg_set_buf(&sg[3], wbuf4, SDMA_BUF_SIZE); ret = dma_map_sg(NULL, sg, 4, dma_m2m_config.direction); sg_init_table(sg2, 4); sg_set_buf(&sg2[0], rbuf, SDMA_BUF_SIZE); sg_set_buf(&sg2[1], rbuf2, SDMA_BUF_SIZE); sg_set_buf(&sg2[2], rbuf3, SDMA_BUF_SIZE); sg_set_buf(&sg2[3], rbuf4, SDMA_BUF_SIZE); ret = dma_map_sg(NULL, sg2, 4, dma_m2m_config.direction); dma_m2m_desc = dma_m2m_chan->device-> device_prep_dma_sg(dma_m2m_chan, sg2, 4, sg, 4, 0); dma_m2m_desc->callback = dma_m2m_callback;
//printk(“1111111111111
”);
do_gettimeofday(&end_time);
start = end_time.tv_sec*1000000 + end_time.tv_usec; dmaengine_submit(dma_m2m_desc); dma_async_issue_pending(dma_m2m_chan); wait_for_completion(&dma_m2m_ok);
//printk(“2222222222222
”);
do_gettimeofday(&end_time);
end = end_time.tv_sec*1000000 + end_time.tv_usec;
printk(“end - start = %d
”, end - start); dma_unmap_sg(NULL, sg, 4, dma_m2m_config.direction); dma_unmap_sg(NULL, sg2, 4, dma_m2m_config.direction); return 0;
}
struct file_operations dma_fops = { open: sdma_open, release:
sdma_release, read: sdma_read, write:
sdma_write,
};
int __init sdma_init_module(void)
{
if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) struct device *temp_class;
else struct class_device *temp_class;
endif int error; /* register a character device */ error = register_chrdev(0, “sdma_test”, &dma_fops); if (error < 0) { printk(“SDMA test driver can’t get major number
”); return error; } gMajor = error; printk(“SDMA test major number = %d
”,gMajor); dma_tm_class = class_create(THIS_MODULE, “sdma_test”); if (IS_ERR(dma_tm_class)) { printk(KERN_ERR “Error creating sdma test module class.
”); unregister_chrdev(gMajor, “sdma_test”); return PTR_ERR(dma_tm_class); }
if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28)) temp_class = device_create(dma_tm_class, NULL, MKDEV(gMajor, 0), NULL, “sdma_test”);
elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) temp_class = device_create(dma_tm_class, NULL, MKDEV(gMajor, 0), “sdma_test”);
else temp_class = class_device_create(dma_tm_class, NULL, MKDEV(gMajor, 0), NULL, “sdma_test”);
endif if (IS_ERR(temp_class)) { printk(KERN_ERR “Error creating sdma test class device.
”); class_destroy(dma_tm_class); unregister_chrdev(gMajor, “sdma_test”); return -1; } printk(“SDMA test Driver Module loaded
”); return 0;
}
static void sdma_cleanup_module(void)
{ unregister_chrdev(gMajor, “sdma_test”);
if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) device_destroy(dma_tm_class, MKDEV(gMajor, 0));
else class_device_destroy(dma_tm_class, MKDEV(gMajor, 0));
endif class_destroy(dma_tm_class); printk(“SDMA test Driver Module Unloaded
”);
}
module_init(sdma_init_module);
module_exit(sdma_cleanup_module);
当时测出大约1秒钟可以拷贝50M的数据,但是客户还觉得不满意。