uClinux和Linux的异同

2019-07-13 03:39发布

uClinux和Linux的异同     
uCLinux是针对控制领域的嵌入式linux操作系统,它从Linux 2.0/2.4内核派生而来,沿袭了主流Linux的绝大部分特性。适合不具备内存管理单元(MMU)的微处理器/微控制器。没有MMU支持是uClinux与主流Linux的基本差异。
  标准Linux是针对有MMU的处理器设计的。在这种处理器上,虚拟地址被送到MMU,把虚拟地址映射为物理地址。通过赋予每个任务不同的虚拟-物理地址转换映射,支持不同任务之间的保护。


  对uCLinux 来说,其设计针对没有MMU的处理器,不能使用处理器的虚拟内存管理技术。uCLinux仍然采用存储器的分页管理,系统在启动时把实际存储器进行分页。在加载应用程序时程序分页加载。但是由于没有MMU管理,所以实际上uCLinux采用实存储器管理策略。uCLinux系统对于内存的访问是直接的,所有程序中访问的地址都是实际的物理地址。操作系统对内存空间没有保护,各个进程实际上共享一个运行空间。一个进程在执行前,系统必须为进程分配足够的连续地址空间,然后全部载入主存储器的连续空间中。


  同时,uClinux有着特别小的内核和用户软件空间。熟悉主流Linux的开发者会注意到在 uClinux下工作的微小差异,但同样也可以很快熟悉uclinux的一些特性。对于设计内核或系统空间的应用程序的开发者,要特别注意uClinux 既没有内存保护,也没有虚拟内存模型,另外,有些内核系统调用也有差异。


  1.1 内存保护


  没有内存保护(Memory Protection)的操作会导致这样的结果:即使由无特权的进程来调用一个无效指针,也会触发一个地址错误,并潜在地引起程序崩溃,甚至导致系统的挂起。显然,在这样的系统上运行的代码必须仔细编程,并深入测试来确保健壮性和安全。


  对于普通的Linux来说,需要运行不同的用户程序,如果没有内存保护将大大降低系统的安全性和可*性;然而对于嵌入式uClinux系统而言,由于所运行的程序往往是在出厂前已经固化的,不存在危害系统安全的程序侵入的隐患,因此只要应用程序经过较完整的测试,出现问题的概率就可以控制在有限的范围内。


  1.2 虚拟内存


  没有虚拟内存(Virtual Memory)主要导致下面几个后果:


  首先,由内核所加载的进程必须能够独立运行,与它们在内存中的位置无关。实现这一目标的第一种办法是一旦程序被加载到RAM中,那么程序的基准地址就“固定”下来;另一种办法是产生只使用相对寻址的代码(称为“位置无关代码”,Position Independent Code,简称PIC)。uClinux对这两种模式都支持。


  其次,要解决在扁平(flat)的内存模型中的内存分配和释放问题。非常动态的内存分配会造成内存碎片,并可能耗尽系统的资源。对于使用了动态内存分配的那些应用程序来说,增强健壮性的一种办法是用预分配缓冲区池(Preallocated buffer pool)的办法来取代malloc()调用。


  由于uclinux中不使用虚拟内存,进出内存的页面交换也没有实现,因为不能保证页面会被加载到RAM中的同样位置。在普通计算机上,操作系统允许应用程序使用比物理内存(RAM)更大的内存空间,这往往是通过在硬盘上设立交换分区来实现的。但是,在嵌入式系统中,通常都用FLASH存储器来代替硬盘,很难高效地实现内存页面交换的存取,因此,对运行的应用程序都限制其可分配空间不大于系统的RAM空间。


  最后,uClinux目标板处理器缺乏内存管理的硬件单元,使得Linux的系统接口需要作些改变。有可能最大的不同就是没有fork()和brk()系统调用。调用fork()将复制出进程来创建一个子进程。在Linux下,fork()是使用copy-on-write页面来实现的。由于没有MMU, uclinux不能完整、可*地复制一个进程,也没有对copy-on-write的存取。为了弥补这一缺陷,uClinux实现了vfork(),当父进程调用vfork()来创建子进程时,两个进程共享它们的全部内存空间,包括堆栈。子进程要么代替父进程执行(此时父进程已经sleep)直到子进程调用exitI()退出,要么调用exec()执行一个新的进程,这个时候将产生可执行文件的加载。即使这个进程只是父进程的拷贝,这个过程也不能避免。当子进程执行exit()或exec()后,子进程使用wakeup把父进程唤醒,父进程继续往下执行。


 


 


由于Linux和UNIX相似,是多用户、多任务的操作系统,内核必须采取特殊的防范措施,以保证同一系统内来自不同用户的上千个操作正确安全地运行。UNIX的安全模型(即Linux之前的设计)能够保护每个用户操作的自身环境和地址空间。每个用户操作都受到保护,防止被其它用户唤醒,而且,虚拟内存(VM)系统对现代CPU还有另外的要求,比如在个人处理内存中实现动态内存分配和随机内存区域规划。有一些设备,如Blackfin 处理器,没有提供全功能的MMU内存管理单元,因为开发者的应用程序并不使用操作系统,通常也不需要MMU,而且,Blackfin的弱MMU的处理器往往具有更高的效率,其价格也明显低于其它产品。


为使Linux与这些设备相适应,必须进行一些改动: 
1. 没有实际的存储器保护(一个错误的环节可以让整个系统停机) 
2. 没有交叉(fork)系统调用 
3. 只有简单的内存分配 
4. 其它一些较小的区别
存储器保护对大多数嵌入式系统来说不是很大的问题。Linux是一个很稳定的平台,尤其是在嵌入式系统中,软件崩溃的情况很少发生。
第二点的问题要大一些。在为UNIX和Linux编写的软件中,开发者常常使用fork系统调用来实现并行处理,fork调用可以准确拷贝原始程序并同时予以执行。为了提高效率,它使用MMU将父程序映射到子程序,并只拷贝写入子程序的内存区。因此uClinux不能提供fork系统调用。它提供vfork,一种特殊版本的fork,在vfork程序中当子程序执行时父程序即会终止。 因此,使用fork系统的软件在使用uClinux支持的vfork或线程时必须重写,因为他们使用相同的内存空间,包括堆栈。
就第三点来说   
,一般情况下支持uClinux的malloc系统不会有问题,但是,有些时候必须进行小的调整。大部分适用于UNIX和uClinux的软件(可在http://freshmeat.net上找到此类软件)能够直接在uClinux上编译,其它的则可使用微小的移植或调整(tweaking)。 只有很少的应用软件不能在uClinux上运行,其中大部分不能作为嵌入式应用软件。
原文地址:http://sacthy.blog.163.com/blog/static/751874552008423101618531/