基于ARM的嵌入式Linux移植真实体验(2)――BootLoader

2019-07-13 06:53发布

 BootLoader指系统启动后,在操作系统内核运行之前运行的一段小程序。通过BootLoader,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。通常,BootLoader是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 BootLoader 几乎是不可能的。尽管如此,我们仍然可以对BootLoader归纳出一些通用的概念来,以指导用户特定的BootLoader设计与实现。   BootLoader 的实现依赖于CPU的体系结构,因此大多数 BootLoader 都分为stage1 和stage2 两大部分。依赖于CPU体系结构的代码,比如设备初始化代码等,通常都放在 stage1中,而且通常都用汇编语言来实现,以达到短小精悍的目的。而stage2 则通常用C 语言来实现,这样可以实现更复杂的功能,而且代码会具有更好的可读性和可移植性。   BootLoader 的 stage1 通常包括以下步骤:   Ø     硬件设备初始化;   Ø     为加载Boot Loader的stage2准备 RAM 空间;   Ø     拷贝Boot Loader的stage2 到RAM空间中;   Ø     设置好堆栈;   Ø     跳转到 stage2 的 C 入口点。   Boot Loader的stage2通常包括以下步骤:         Ø     初始化本阶段要使用到的硬件设备;   Ø     检测系统内存映射(memory map);   Ø     将kernel 映像和根文件系统映像从flash上读到 RAM 空间中;   Ø     为内核设置启动参数;   Ø     调用内核。   本系统中的BootLoader参照韩国mizi公司的vivi进行修改。 1.开发环境   我们购买了武汉创维特信息技术有限公司开发的具有自主知识产权的应用于嵌入式软件开发的集成软、硬件开发平台ADT(ARM Development Tools)它为基于ARM 核的嵌入式应用提供了一整套完备的开发方案,包括程序编辑、工程管理和设置、程序编译、程序调试等。   ADT嵌入式开发环境由ADT Emulator for ARM 和ADT IDE for ARM组成。ADT Emulator for ARM 通过JTAG 实现主机和目标机之间的调试支持功能。它无需目标存储器,不占用目标系统的任何端口资源。目标程序直接在目标板上运行,通过ARM 芯片的JTAG 边界扫描口进行调试,属于完全非插入式调试,其仿真效果接近真实系统。   ADT IDE for ARM 为用户提供高效明晰的图形化嵌入式应用软件开发环境,包括一整套完备的面向嵌入式系统的开发和调试工具:源码编辑器、工程管理器、工程编译器(编译器、汇编器和连接器)、集成调试环境、ADT Emulator for ARM 调试接口等。其界面同Microsoft Visual Studio 环境相似,用户可以在ADT IDE for ARM 集成开发环境中创建工程、打开工程,建立、打开和编辑文件,编译、连接、设置、运行、调试嵌入式应用程序。   ADT嵌入式软件开发环境采用主机-目标机交叉开发模型。ADT IDE for ARM 运行于主机端,而ADT Emulator for ARM 实现ADT IDE for ARM 与目标机之间的连接。开发时,首先由ADT IDE for ARM 编译连接生成目标代码,然后建立与ADT Emulator for ARM 之间的调试通道,调试通道建立成功后,就可以在ADT IDE for ARM 中通过ADT Emulator for ARM 控制目标板实现目标程序的调试,包括将目标代码下载到目标机中,控制程序运行,调试信息观察等等。 基于ARM的嵌入式Linux移植真实体验(2)――BootLoader2.ARM汇编   ARM本身属于RISC指令系统,指令条数就很少,而其编程又以C等高级语言为主,我们仅需要在Bootloader的第一阶段用到少量汇编指令:   (1)+-运算 ADD  r0, r1, r2 
―― r0 := r1 + r2
SUB  r0, r1, r2 
―― r0 := r1 - r2
  其中的第二个操作数可以是一个立即数: ADD r3, r3, #1
―― r3 := r3 + 1
  第二个操作数还可以是位移操作后的结果: ADD r3, r2, r1, LSL #3
―― r3 := r2 + 8.r1
  (2)位运算 AND r0, r1, r2 
―― r0 := r1 and r2
ORR r0, r1, r2
―― r0 := r1 or  r2
EOR r0, r1, r2
―― r0 := r1 xor r2
BIC  r0, r1, r2 
―― r0 := r1 and not r2
  (3)寄存器搬移 MOV r0, r2
―― r0 := r2
MVN r0, r2     
―― r0 := not r2
  (4)比较 CMP r1, r2
―― set cc on r1 - r2
CMN r1, r2
―― set cc on r1 + r2
TST r1, r2
―― set cc on r1 and r2
TEQ r1, r2
―― set cc on r1 or r2
  这些指令影响CPSR寄存器中的 (N, Z, C, V) 位   (5)内存操作 LDR r0, [r1]
―― r0 := mem [r1]
STR r0, [r1]
―― mem [r1] := r0
LDR r0, [r1, #4]
―― r0 := mem [r1+4]
LDR r0, [r1, #4] !
―― r0 := mem [r1+4]   r1 := r1 + 4
LDR r0, [r1], #4
―― r0 := mem [r1]    r1 := r1 +4
LDRB r0 , [r1]
―― r0 := mem8 [r1]
LDMIA r1, {r0, r2, r5}
―― r0 := mem [r1]  r2 := mem [r1+4]  r5 := mem [r1+8] {..} 可以包括r0~r15中的所有寄存器,若包括r15 (PC)将导致程序的跳转。
  (6)控制流   例1: MOV r0, #0 ; initialize counter
LOOP:
 ADD r0, r0, #1 ; increment counter
 CMP r0, #10 ; compare with limit
 BNE LOOP ; repeat if not equal
  例2: CMP r0, #5
ADDNE r1, r1, r0
SUBNE r1, r1, r2
――
if (r0 != 5) {
r1 := r1 + r0 - r2
}
  3.BootLoader第一阶段   3.1硬件设备初始化   基本的硬件初始化工作包括:   Ø     屏蔽所有的中断;   Ø     设置CPU的速度和时钟频率;   Ø     RAM初始化;   Ø     初始化LED   ARM的中断向量表设置在0地址开始的8个字空间中,如下表:   每当其中的某个异常发生后即将PC值置到相应的中断向量处,每个中断向量处放置一个跳转指令到相应的中断服务程序去进行处理,中断向量表的程序如下: @ 0x00: Reset
    b   Reset
@ 0x04: Undefined instruction exception
UndefEntryPoint:
    b   HandleUndef
@ 0x08: Software interrupt exception
SWIEntryPoint:
    b   HandleSWI
@ 0x0c: Prefetch Abort (Instruction Fetch Memory Abort)
PrefetchAbortEnteryPoint:
    b   HandlePrefetchAbort
@ 0x10: Data Access Memory Abort
DataAbortEntryPoint:
    b   HandleDataAbort
@ 0x14: Not used
NotUsedEntryPoint:
    b   HandleNotUsed
@ 0x18: IRQ(Interrupt Request) exception
IRQEntryPoint:
    b   HandleIRQ
@ 0x1c: FIQ(Fast Interrupt Request) exception
FIQEntryPoint:
    b   HandleFIQ
Reset:
    @ disable watch dog timer
    mov r1, #0x53000000
    mov r2, #0x0
    str  r2, [r1]
  
    @ disable all interrupts
    mov r1, #INT_CTL_BASE
    mov r2, #0xffffffff
    str  r2, [r1, #oINTMSK]
    ldr  r2, =0x7ff
    str  r2, [r1, #oINTSUBMSK]
  设置系统时钟:   @init clk
  @ 1:2:4
  mov r1, #CLK_CTL_BASE
  mov r2, #0x3 
  str  r2, [r1, #oCLKDIVN]
  mrc p15, 0, r1, c1, c0, 0       @ read ctrl register
  orr  r1, r1, #0xc0000000       @ Asynchronous 
  mcr p15, 0, r1, c1, c0, 0       @ write ctrl register
  @ now, CPU clock is 200 Mhz
  mov r1, #CLK_CTL_BASE
  ldr  r2, mpll_200mhz
  str  r2, [r1, #oMPLLCON]
  点亮所有的用户LED:     @ All LED on
    mov r1, #GPIO_CTL_BASE
    add r1, r1, #oGPIO_F
    ldr  r2,=0x55aa
    str  r2, [r1, #oGPIO_CON]
    mov r2, #0xff
    str  r2, [r1, #oGPIO_UP]
    mov r2, #0x00
    str  r2, [r1, #oGPIO_DAT]
  设置(初始化)内存映射: ENTRY(memsetup)
    @ initialise the static memory
  
    @ set memory control registers
    mov r1, #MEM_CTL_BASE
    adrl r2, mem_cfg_val
    add r3, r1, #52
1:   ldr  r4, [r2], #4
    str  r4, [r1], #4
    cmp r1, r3
    bne 1b
  
    mov pc, lr @ set GPIO for UART
    mov r1, #GPIO_CTL_BASE
    add r1, r1, #oGPIO_H
    ldr  r2, gpio_con_uart 
    str  r2, [r1, #oGPIO_CON]
    ldr  r2, gpio_up_uart
    str  r2, [r1, #oGPIO_UP]  
    bl   InitUART
  
@ Initialize UART
@
@ r0 = number of UART port
InitUART:
    ldr  r1, SerBase
    mov r2, #0x0
    str  r2, [r1, #oUFCON]
    str  r2, [r1, #oUMCON]
    mov r2, #0x3
    str  r2, [r1, #oULCON]
    ldr  r2, =0x245
    str  r2, [r1, #oUCON]
#define UART_BRD ((50000000 / (UART_BAUD_RATE * 16)) - 1)
    mov r2, #UART_BRD
    str  r2, [r1, #oUBRDIV]
    mov r3, #100
    mov r2, #0x0
1:   sub r3, r3, #0x1
    tst  r2, r3
    bne 1b
  
#if 0
    mov r2, #'U'
    str  r2, [r1, #oUTXHL]
  
1:   ldr  r3, [r1, #oUTRSTAT]
    and r3, r3, #UTRSTAT_TX_EMPTY
    tst  r3, #UTRSTAT_TX_EMPTY
    bne 1b  
  
    mov r2, #'0'
    str  r2, [r1, #oUTXHL]
  
1:   ldr  r3, [r1, #oUTRSTAT]
    and r3, r3, #UTRSTAT_TX_EMPTY
    tst  r3, #UTRSTAT_TX_EMPTY
    bne 1b  
#endif
  
    mov pc, lr@ PrintChar : prints the character in R0
@  r0 contains the character
@  r1 contains base of serial port
@  writes ro with XXX, modifies r0,r1,r2
@  TODO : write ro with XXX reg to error handling
PrintChar:
TXBusy:
    ldr  r2, [r1, #oUTRSTAT]
    and r2, r2, #UTRSTAT_TX_EMPTY
    tst  r2, #UTRSTAT_TX_EMPTY
    beq TXBusy 
    str  r0, [r1, #oUTXHL]
    mov pc, lr
  
@ PrintWord : prints the 4 characters in R0
@  r0 contains the binary word
@  r1 contains the base of the serial port
@  writes ro with XXX, modifies r0,r1,r2
@  TODO : write ro with XXX reg to error handling
PrintWord:
    mov r3, r0
    mov r4, lr
    bl   PrintChar
  
    mov r0, r3, LSR #8       /* shift word right 8 bits */
    bl   PrintChar
  
    mov r0, r3, LSR #16       /* shift word right 16 bits */
    bl   PrintChar
    mov r0, r3, LSR #24       /* shift word right 24 bits */
    bl   PrintChar
  
    mov r0, #'r'
    bl   PrintChar
  
    mov r0, #'n'
    bl   PrintChar
  
    mov pc, r4
  
@ PrintHexWord : prints the 4 bytes in R0 as 8 hex ascii characters
@ followed by a newline
@  r0 contains the binary word
@  r1 contains the base of the serial port
@  writes ro with XXX, modifies r0,r1,r2
@  TODO : write ro with XXX reg to error handling
PrintHexWord:
    mov r4, lr
    mov r3, r0
    mov r0, r3, LSR #28
    bl   PrintHexNibble
    mov r0, r3, LSR #24
    bl   PrintHexNibble
    mov r0, r3, LSR #20
    bl   PrintHexNibble
    mov r0, r3, LSR #16
    bl   PrintHexNibble
    mov r0, r3, LSR #12
    bl   PrintHexNibble
    mov r0, r3, LSR #8
    bl   PrintHexNibble
    mov r0, r3, LSR #4
    bl   PrintHexNibble
    mov r0, r3
    bl   PrintHexNibble
  
    mov r0, #'r'
    bl   PrintChar
  
    mov r0, #'n'
    bl   PrintChar
  
    mov pc, r4 3.2Bootloader拷贝
  配置为从NAND FLASH启动,需要将NAND FLASH中的vivi代码copy到RAM中: #ifdef CONFIG_S3C2410_NAND_BOOT
    bl   copy_myself
  
    @ jump to ram
    ldr  r1, =on_the_ram
    add pc, r1, #0
    nop
    nop
1:   b   1b      @ infinite loop
  
#ifdef CONFIG_S3C2410_NAND_BOOT
@
@ copy_myself: copy vivi to ram
@
copy_myself:
    mov r10, lr
  
    @ reset NAND
    mov r1, #NAND_CTL_BASE
    ldr  r2, =0xf830      @ initial value
    str  r2, [r1, #oNFCONF]
    ldr  r2, [r1, #oNFCONF]
    bic  r2, r2, #0x800    @ enable chip
    str  r2, [r1, #oNFCONF]
    mov r2, #0xff    @ RESET command
    strb r2, [r1, #oNFCMD]
    mov r3, #0          @ wait
1:   add r3, r3, #0x1
    cmp r3, #0xa
    blt  1b
2:   ldr  r2, [r1, #oNFSTAT]    @ wait ready
    tst  r2, #0x1
    beq 2b
    ldr  r2, [r1, #oNFCONF]
    orr  r2, r2, #0x800    @ disable chip
    str  r2, [r1, #oNFCONF]
  
    @ get read to call C functions (for nand_read())
    ldr  sp, DW_STACK_START   @ setup stack pointer
    mov fp, #0          @ no previous frame, so fp=0
  
    @ copy vivi to RAM
    ldr  r0, =VIVI_RAM_BASE
    mov   r1, #0x0
    mov r2, #0x20000
    bl   nand_read_ll
  
    tst  r0, #0x0
    beq ok_nand_read
#ifdef CONFIG_DEBUG_LL
bad_nand_read:
    ldr  r0, STR_FAIL
    ldr  r1, SerBase
    bl   PrintWord
1:   b   1b      @ infinite loop
#endif
ok_nand_read:
#ifdef CONFIG_DEBUG_LL
    ldr  r0, STR_OK
    ldr  r1, SerBase
    bl   PrintWord
#endif
  
    @ verify
    mov r0, #0
    ldr  r1, =0x33f00000
    mov r2, #0x400   @ 4 bytes * 1024 = 4K-bytes
go_next:
    ldr  r3, [r0], #4
    ldr  r4, [r1], #4
    teq  r3, r4
    bne notmatch
    subs r2, r2, #4
    beq done_nand_read  
    bne go_next
notmatch:
#ifdef CONFIG_DEBUG_LL
    sub r0, r0, #4
    ldr  r1, SerBase
    bl   PrintHexWord
    ldr  r0, STR_FAIL
    ldr  r1, SerBase
    bl   PrintWord
#endif
1:   b   1b
done_nand_read:
  
#ifdef CONFIG_DEBUG_LL
    ldr  r0, STR_OK
    ldr  r1, SerBase
    bl   PrintWord
#endif
  
    mov pc, r10
  
@ clear memory
@ r0: start address
@ r1: length
mem_clear:
    mov r2, #0
    mov r3, r2
    mov r4, r2
    mov r5, r2
    mov r6, r2
    mov r7, r2
    mov r8, r2
    mov r9, r2
  
clear_loop:
    stmia    r0!, {r2-r9}
    subs r1, r1, #(8 * 4)
    bne clear_loop
  
    mov pc, lr
  
#endif @ CONFIG_S3C2410_NAND_BOOT3.3进入C代码
  首先要设置堆栈指针sp,堆栈指针的设置是为了执行C语言代码作好准备。设置好堆栈后,调用C语言的main函数: @ get read to call C functions
ldr  sp, DW_STACK_START   @ setup stack pointer
mov fp, #0          @ no previous frame, so fp=0
mov a2, #0          @ set argv to NULL
  
bl   main           @ call main
  
mov pc, #FLASH_BASE       @ otherwise, reboot
  4. BootLoader第二阶段   vivi Bootloader的第二阶段又分成了八个小阶段,在main函数中分别调用这几个小阶段的相关函数: int main(int argc, char *argv[])
{
    int ret;
  
    /*
    * Step 1:
    */
    putstr("rn");
    putstr(vivi_banner);
  
    reset_handler();
  
    /*
    * Step 2:
    */
    ret = board_init();
    if (ret) {
       putstr("Failed a board_init() procedurern");
       error();
    }
  
    /*
    * Step 3:
    */
    mem_map_init();
    mmu_init();
    putstr("Succeed memory mapping.rn");
  
    /*
    * Now, vivi is running on the ram. MMU is enabled.
    */
  
    /*
    * Step 4:
    */
    /* initialize the heap area*/
    ret = heap_init();
    if (ret) {
       putstr("Failed initailizing heap regionrn");
       error();
    }
  
    /* Step 5:
    */
    ret = mtd_dev_init();
  
    /* Step 6:
    */
    init_priv_data();
  
    /* Step 7:
    */
    misc();
  
    init_builtin_cmds();
  
    /* Step 8:
    */
    boot_or_vivi();
  
    return 0;
} STEP1的putstr(vivi_banner)语句在串口输出一段字符说明vivi的版本、作者等信息,vivi_banner定义为:
const char *vivi_banner =
            "VIVI version " VIVI_RELEASE " (" VIVI_COMPILE_BY "@"
            VIVI_COMPILE_HOST ") (" VIVI_COMPILER ") " UTS_VERSION "rn";
  reset_handler进行相应的复位处理: void
reset_handler(void)
{
    int pressed;
  
    pressed = is_pressed_pw_btn();
  
    if (pressed == PWBT_PRESS_LEVEL) {
       DPRINTK("HARD RESETrn");
       hard_reset_handle();
    } else {
       DPRINTK("SOFT RESETrn");
       soft_reset_handle();
    }
}
  hard_reset_handle会clear内存,而软件复位处理则什么都不做: static void
hard_reset_handle(void)
{
    clear_mem((unsigned long)USER_RAM_BASE, (unsigned long)USER_RAM_SIZE);
}
  STEP2进行板初始化,设置时间和可编程I/O口: int board_init(void)
{
    init_time();
    set_gpios();
  
    return 0;
}
  STEP3进行内存映射及MMU初始化: void mem_map_init(void)
{
#ifdef CONFIG_S3C2410_NAND_BOOT
    mem_map_nand_boot();
#else
    mem_map_nor();
#endif
    cache_clean_invalidate();
    tlb_invalidate();
}要调用通用的arm920 MMU初始化函数:
static inline void arm920_setup(void)
{
    unsigned long ttb = MMU_TABLE_BASE;
  
__asm__(
    /* Invalidate caches */
    "mov    r0, #0n"
    "mcr    p15, 0, r0, c7, c7, 0n" /* invalidate I,D caches on v4 */
    "mcr    p15, 0, r0, c7, c10, 4n" /* drain write buffer on v4 */
    "mcr    p15, 0, r0, c8, c7, 0n" /* invalidate I,D TLBs on v4 */
    /* Load page table pointer */
    "mov    r4, %0n"
    "mcr    p15, 0, r4, c2, c0, 0n" /* load page table pointer */
    /* Write domain id (cp15_r3) */
    "mvn    r0, #0n"        /* Domains 0, 1 = client */
    "mcr    p15, 0, r0, c3, c0, 0n" /* load domain access register */
    /* Set control register v4 */
    "mrc    p15, 0, r0, c1, c0, 0n" /* get control register v4 */
    /* Clear out 'unwanted' bits (then put them in if we need them) */
                     /* .RVI ..RS B... .CAM */
    "bic r0, r0, #0x3000n"     /* ..11 .... .... .... */
    "bic r0, r0, #0x0300n"     /* .... ..11 .... .... */
    "bic r0, r0, #0x0087n"     /* .... .... 1... .111 */
    /* Turn on what we want */
    /* Fault checking enabled */
    "orr r0, r0, #0x0002n"     /* .... .... .... ..1. */
#ifdef CONFIG_CPU_D_CACHE_ON
    "orr r0, r0, #0x0004n"     /* .... .... .... .1.. */
#endif 
#ifdef CONFIG_CPU_I_CACHE_ON
    "orr r0, r0, #0x1000n"     /* ...1 .... .... .... */
#endif 
    /* MMU enabled */
    "orr r0, r0, #0x0001n"     /* .... .... .... ...1 */
    "mcr    p15, 0, r0, c1, c0, 0n" /* write control register */
    : /* no outputs */
    : "r" (ttb) );
}STEP4设置堆栈;STEP5进行mtd设备的初始化,记录MTD分区信息;STEP6设置私有数据;STEP7初始化内建命令。
  STEP8启动一个SHELL,等待用户输出命令并进行相应处理。在SHELL退出的情况下,启动操作系统: #define DEFAULT_BOOT_DELAY    0x30000000
void boot_or_vivi(void)
{
    char c;
    int ret;
    ulong boot_delay;
  
    boot_delay = get_param_value("boot_delay", &ret);
    if (ret) boot_delay = DEFAULT_BOOT_DELAY;
    /* If a value of boot_delay is zero,
    * unconditionally call vivi shell */
    if (boot_delay == 0) vivi_shell();
  
    /*
    * wait for a keystroke (or a button press if you want.)
    */
    printk("Press Return to start the LINUX now, any other key for vivin");
    c = awaitkey(boot_delay, NULL);
    if (((c != 'r') && (c != 'n') && (c != ''))) {
       printk("type "help" for help.n");
       vivi_shell();
    }
    run_autoboot();
  
    return;
}
  SHELL中读取用户从串口输出的命令字符串,执行该命令: void
vivi_shell(void)
{
#ifdef CONFIG_SERIAL_TERM
    serial_term();
#else
#error there is no terminal.
#endif
}
void serial_term(void)
{
    char cmd_buf[MAX_CMDBUF_SIZE];
  
    for (;;) {
       printk("%s> ", prompt);
  
       getcmd(cmd_buf, MAX_CMDBUF_SIZE);
  
       /* execute a user command */
       if (cmd_buf[0])
           exec_string(cmd_buf);
    }
}5.电路板调试
  在电路板的调试过程中,我们首先要在ADT新建的工程中添加第一阶段的汇编代码head.S文件,修改Link脚本,将代码和数据映射到S3C2410A自带的0x40000000开始的4KB内存空间内: SECTIONS
{
    . = 0x40000000;
    .text : { *(.text) }
    Image_RO_Limit = .;
    Image_RW_Base = .;
    .data : { *(.data) }
    .rodata : { *(.rodata) }
    Image_ZI_Base = .;
    .bss : { *(.bss) }
    Image_ZI_Limit = .;
    __bss_start__ = .;
    __bss_end__ = .;
    __EH_FRAME_BEGIN__ = .;
    __EH_FRAME_END__ = .;
PROVIDE (__stack = .);
    end = .;
    _end = .;
    .debug_info   0 : { *(.debug_info) }
   .debug_line      0 : { *(.debug_line) }
   .debug_abbrev  0 : { *(.debug_abbrev)}
   .debug_frame  0 : { *(.debug_frame) }
}
  借助万用表、示波器等仪器仪表,调通SDRAM,并将vivi中自带的串口、NAND FLASH驱动添加到工程中,调试通过板上的串口和FLASH。如果板电路的原理与三星公司DEMO板有差距,则vivi中硬件的操作要进行相应的修改。全部调试通过后,修改vivi源代码,重新编译vivi,将其烧录入NAND FLASH就可以在复位后启动这个Bootloader了。   调试板上的新增硬件时,宜在ADT中添加相应的代码,在不加载操作系统的情况下,单纯地操作这些硬件。如果电路板设计有误,要进行飞线和割线等处理。   6.小结   本章讲解了ARM汇编、Bootloader的功能,Bootloader的调试环境及ARM电路板的调试方法。